精英家教网 > 初中数学 > 题目详情
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)
(1);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.

试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;
(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;
(3)根据抛物线的性质和图象,求出每月的成本.
试题解析:(1)由题意,得:
.
(2)函数的图象的对称轴是直线
又∵a=-10<0,抛物线开口向下.∴当20≤x≤32时,w随着x的增大而增大。
∴当x=32时,w=2160.
答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.
(3)取w=2000得,,解这个方程得:x1=30,x2=40。
∵a=-10<0,抛物线开口向下.
∴当30≤x≤40时,w≥2000.
∵20≤x≤32,∴当30≤x≤32时,w≥2000.
设每月的成本为P(元),由题意,得
∵k=-200<0,∴P随x的增大而减小.
∴当x=32时,P的值最小,P最小值=3600.
答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

沙坪坝火车站将改造成一个集高铁、轻轨、公交、停车场、商业于一体的地下七层建筑,地面上欲建造一个圆形喷水池,如图,点表示喷水池的水面中心,表示喷水柱子,水流从点喷出,按如图所示的直角坐标系,每一股水流在空中的路线可以用来描述,那么水池的半径至少要          米,才能使喷出的水流不致落到池外。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=2(x+1)(x-3)的对称轴是(     )
A.直线x=-1B.直线x="1" C.直线x=2D.直线x=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
x

―1
0
3



0

0

(1)求y1与x之间的函数关系式;
(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
①求y2与x之间的函数关系式;
②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线过两点(m,0)、(n,0),且,抛物线于双曲线(x>0)的交点为(1,d).
(1)求抛物线与双曲线的解析式;
(2)已知点都在双曲线(x>0)上,它们的横坐标分别为,O为坐标原点,记,点Q在双曲线(x<0)上,过Q作QM⊥y轴于M,记
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是(      )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当二次函数取最小值时,的值为
A.B.C.D.

查看答案和解析>>

同步练习册答案