¹Û²ìÏÂÁеÈʽ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1
£»
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
=
2011
2012
2011
2012
£»
£¨3£©Èç¹ûÓÐÀíÊýa£¬bÂú×ã|ab-2|+£¨1-a£©2=0£¬ÊÔÇó 
1
(a+1)(b+2)
+
1
(a+3)(b+4)
+
1
(a+5)(b+6)
+¡­+
1
(a+2009)(b+2010)
£®
·ÖÎö£º£¨1£©¸ù¾ÝÒÑÖªµÄʽ×Ó¿ÉÒÔÖ±½ÓµÃµ½£»
£¨2£©¸ù¾Ý£¨1£©µÄ½á¹û£¬°Ñÿ¸ö¼ÓÊýд³ÉÁ½¸ö·ÖÊýµÄ²îµÄÐÎʽ£¬È»ºó½øÐмÆËã¼´¿ÉÇó½â£»
£¨3£©¸ù¾Ý·Ç¸ºÊýµÄÐÔÖÊÇóµÃa¡¢bµÄÖµ£¬´úÈëËùÇóµÄʽ×Ó£¬È»ºóÀûÓã¨1£©ÖеĽáÂÛ¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©
1
n(n+1)
=
1
n
-
1
n+1
£»

£¨2£©Ô­Ê½=
1
1
-
1
2
+
1
2
-
1
3
+¡­+
1
2011
-
1
2012
=1-
1
2012
=
2011
2012
£»

£¨3£©¸ù¾ÝÌâÒâµÃ£º
ab-2=0
1-a=0
£¬
½âµÃ£º
a=1
b=2
£¬
´úÈëʽ×ӵõ½£¬Ô­Ê½=
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2010¡Á2012
=
1
2
£¨
1
2
-
1
4
+
1
4
-
1
6
+¡­+
1
2010
-
1
2012
£©=
1
2
£¨
1
2
-
1
2012
£©=
1005
4024
£®
µãÆÀ£º±¾Ì⿼²éÁËÓÐÀíÊýµÄÔËË㣬ÕýÈ·¶Á¶®ÌâÒ⣬Àí½âʽ×ӵıäÐÎÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2012¡Á2013
=
2012
2013
2012
2013
£»
¢Ú
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
n
n+1
n
n+1
£®
£¨3£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2012¡Á2014
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=  
1
n
-
1
n+1
1
n
-
1
n+1

£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
=
2011
2012
2011
2012

¢Ú
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n¡Á(n+1)
=
n
n+1
n
n+1

£¨3£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2010¡Á2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2007¡Á2008
=
2007
2008
2007
2008
£»
¢Ú
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
n
n+1
n
n+1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2008¡Á2009
=
2008
2009
2008
2009
£»
¢Ú
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
n
n+1
n
n+1
£®
£¨3£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2008¡Á2010
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸