精英家教网 > 初中数学 > 题目详情

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;

(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.


    解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,

解得

∴解析式为y=﹣x2﹣2x+3

∵﹣x2﹣2x+3=﹣(x+1)2+4,

∴抛物线顶点坐标D为(﹣1,4).

(2)∵A(﹣3,0),D(﹣1,4),

∴设AD为解析式为y=kx+b,有

解得

∴AD解析式:y=2x+6,

∵P在AD上,

∴P(x,2x+6),

∴S△APE=•PE•yP=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S取最大值

(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,

∵△PEF沿EF翻折得△P′EF,且P(﹣,3),

∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=

∵PF∥y轴,

∴∠PFE=∠FEN,

∵∠PFE=∠P′FE,

∴∠FEN=∠P′FE,

∴EN=FN,

设EN=m,则FN=m,P′N=3﹣m.

在Rt△P′EN中,

∵(3﹣m)2+(2=m2

∴m=

∵S△P′EN=•P′N•P′E=•EN•P′M,

∴P′M=

在Rt△EMP′中,

∵EM==

∴OM=EO﹣EM=

∴P′).

当x=时,y=﹣(2﹣2•+3=

∴点P′不在该抛物线上.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是(  )

 

A.

﹣1

B.

C.

D.

π﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人. 设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).

(1)求y与x(x>20)的函数关系式;

(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;

(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入-接待成本)

查看答案和解析>>

科目:初中数学 来源: 题型:


函数的自变量x的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:


解方程:=

查看答案和解析>>

科目:初中数学 来源: 题型:


一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为(  )

   A.               B.               C.               D. 

查看答案和解析>>

科目:初中数学 来源: 题型:


把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为  

查看答案和解析>>

科目:初中数学 来源: 题型:


在实数范围内有意义,则x的取值范围是【    】

A.         B.          C.          D.

查看答案和解析>>

科目:初中数学 来源: 题型:


方程组的解为 

查看答案和解析>>

同步练习册答案