精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.
(1)求证:四边形ABCD是正方形;
(2)当AE=3EF时,判断FG与EF有何数量关系?并证明你的结论.
分析:(1)由∠BAE=∠BCE,∠AED=∠CED,利用三角形外角的性质,即可得∠CBE=∠ABE,又由四边形ABCD是矩形,即可证得△ABD与△BCD是等腰直角三角形,继而证得四边形ABCD是正方形;
(2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=3EF,利用相似三角形的对应边成比例,即可求得FG=8EF.
解答:(1)证明:∵四边形ABCD是矩形,
∴∠BAD=∠BCD=90°,
∵∠BAE=∠BCE,
∴∠BAD-∠BAE=∠BCD-∠BCE,
即∠DAE=∠DCE,
在△AED和△CED中,
∠DAE=∠DCE
∠AED=∠CED
DE=DE

∴△AED≌△CED(AAS),
∴AD=CD,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形;

(2)当AE=3EF时,FG=8EF.    
证明:设EF=k,则AE=3k
∵△AED≌△CED,
∴CE=AE=3k,
∵四边形ABCD是正方形,
∴AD∥BC,
∴∠G=∠DAE,
又∵∠DAE=∠DCE,
∴∠DCE=∠G,
又∵∠CEF=∠GEC,
∴△CEF∽△GEC,
EF
CE
=
CE
EG

k
3k
=
3k
EG

∴EG=9k,
∴FG=EG-EF=8k,
∴FG=8EF.
点评:此题考查了相似三角形的判定与性质、矩形的性质,正方形的判定与性质、等腰直角三角形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案