精英家教网 > 初中数学 > 题目详情
8.解不等式组$\left\{\begin{array}{l}{x+4<3(x+2)}\\{\frac{2x+1}{3}+1>x}\end{array}\right.$,并写出该不等式组的最小整数解.

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:解不等式x+4<3(x+2),得:x>-1,
解不等式$\frac{2x+1}{3}$+1>x,得:x<4,
∴不等式组的解集为-1<x<4,
则不等式组的最小整数解为0.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.
(1)求这条直线的函数表达式;
(2)Rt△ABC与直线l在同一个平面直角坐标系内,其中∠ABC=90°,AC=2$\sqrt{5}$,A(1,0),B(3,0),将△ABC沿着x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算中,计算结果正确的是(  )
A.a2•a3=a6B.a2+a3=a5C.(a23=a6D.a12÷a6=a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知抛物线y=ax2+bx经过点(3,-3),(-1,-3).
(1)求此抛物线的函数表达式;
(2)将此抛物线向上平移n个单位得到y2,已知y3=-2x+7,且y2与y3只有一个公共点C,求平移单位n及点C的坐标;
(3)y2与x轴交于A、B两点(A点在B点左侧),若y2上有一点M,x轴上有一点N,以A、C、M、N为顶点的四边形为平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,△ABC中,AB=12,AC=8,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如果点P(a,b)在y=$\frac{k}{x}$的图象上,那么在此图象上的点还有(  )
A.(0,0)B.(a,-b)C.(-a,b)D.(-a,-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.【问题提出】
已知任意三角形的两边及夹角(是锐角),求三角形的面积.
【问题探究】
为了解决上述问题,让我们从特殊到一般展开探究.
探究一:在Rt△ABC(图1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面积(用含a、b、α的代数式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=$\frac{AB}{AC}$
∴AB=b•sinα
∴S△ABC=$\frac{1}{2}$BC•AB=$\frac{1}{2}$absinα
探究二:
锐角△ABC(图2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
探究三:
钝角△ABC(图3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
【问题解决】
用文字叙述:已知任意三角形的两边及夹角(是锐角),求三角形面积的方法是S=$\frac{1}{2}$absin∠C(∠C是a、b两边的夹角)
【问题应用】
已知平行四边形ABCD(图4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四边形ABCD的面积.(用含a、b、α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是(  )
A.$\frac{5}{13}$B.$\frac{5}{12}$C.$\frac{12}{13}$D.$\frac{13}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列命题中是真命题的是(  )
A.经过直线外一点,有且仅有一条直线与一线与已知直线垂直
B.平分弦的直径垂直于弦
C.对角线互相平分且垂直的四边形是菱形
D.反比例函数y=$\frac{k}{x}$,当k<0时,y随x的增大而增大

查看答案和解析>>

同步练习册答案