精英家教网 > 初中数学 > 题目详情
我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
(1)等腰梯形、矩形、正方形.
(2)结论:等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于一条对角线的长.
已知:四边形ABCD中,对角线AC,BD交于点O,AC=BD,
且∠AOD=60度.
求证:BC+AD≥AC.
证明:过点D作DFAC,在DF上截取DE,使DE=AC.
连接CE,BE.
故∠EDO=60°,四边形ACED是平行四边形.
∵AC=DE,AC=BD,
∴DE=BD,
∵∠EDO=60°,
∴△BDE是等边三角形.
所以DE=BE=AC.
①当BC与CE不在同一条直线上时(如图1),

在△BCE中,有BC+CE>BE.
所以BC+AD>AC.
②当BC与CE在同一条直线上时(如图2),
则BC+CE=BE.
因此BC+AD=AC
综合①、②,得BC+AD≥AC.
即等对角线四边形中两条对角线所夹角为60°时,这对60°角所对的两边之和大于或等于其中一条对角线的长.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在ABCD中,

AE=EB,AF=2,则FC等于_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系XOY中,有A(3,2),B(-1,-4),P是X轴上的一点,Q是Y轴上的一点,若以点A,B,P,Q四个点为顶点的四边形是平行四边形,则Q点的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是(  )
A.平行四边形B.矩形C.菱形D.梯形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在?ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

不能判定四边形ABCD为平行四边形的条件是(  )
A.AB=CD,AD=BCB.AB=CD,ABCD
C.AB=CD,ADCDD.AD=BC,ADBC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平行四边形ABCD中,AC交BD于点O,AC=8cm,∠AOB=60°.若AC=BD,试求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接菱形的各边中点所得到的四边形是(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

同步练习册答案