精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为
DF
的中点.
(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6
2
,求BC的长.
分析:(1)要证AC是⊙O的切线,只要连接OE,再证DE⊥AC即可.
(2)根据勾股定理和相似三角形的性质即可求出BC的长.
解答:精英家教网(1)证明:连接OE.
∵E为
DF
的中点,
DE
=
EF

∴∠OBE=∠CBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠CBE
∴OE∥BC
∵BC⊥AC,∴∠C=90°
∴∠AEO=∠C=90°,即OE⊥AC
又∵OE为半圆O的半径,
∴AC是半圆O的切线.(2分)

(2)解:设半圆O的半径为x
∵OE⊥AC,
∴(x+6)2-(6
2
2=x2
∴x=3(3分)
∴AB=AD+OD+OB=12
∵OE∥BC,
∴△AOE∽△ABC(4分)
AO
AB
=
OE
BC

9
12
=
3
BC

∴BC=4.(5分)
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:直线AB:y=-x+8与x轴、y轴分别相交于点B、A,过点B作直线AB的垂线交y轴于点D.
(1)求BD两点确定的直线解析式;
(2)若点C是x轴负半轴上的任意一点,过点C作AC的垂线与BD相交于点E,请你判断:线段AC与CE的大小关系并证明你的判断;
(3)若点G为第二象限内任一点,连接EG,过点A作AF⊥FG于F,连接CF,当点C在x轴的负半轴上运动时,∠EFC的度数是否发生变化?若不变,请求出∠EFC的度数;若变化,请求出其变化范围.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过点B,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.
(1)当OA=OD时,点D的坐标为
(0,2
2
(0,2
2
,∠POA=
45
45
°;
(2)当OA<OD时,求证:OP平分∠DOA;
(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图:直线AB:y=-x+8与x轴、y轴分别相交于点B、A,过点B作直线AB的垂线交y轴于点D.
(1)求BD两点确定的直线解析式;
(2)若点C是x轴负半轴上的任意一点,过点C作AC的垂线与BD相交于点E,请你判断:线段AC与CE的大小关系并证明你的判断;
(3)若点G为第二象限内任一点,连接EG,过点A作AF⊥FG于F,连接CF,当点C在x轴的负半轴上运动时,∠EFC的度数是否发生变化?若不变,请求出∠EFC的度数;若变化,请求出其变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.
(1)当OA=OD时,点D的坐标为______,∠POA=______°;
(2)当OA<OD时,求证:OP平分∠DOA;
(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是什么?

查看答案和解析>>

同步练习册答案