精英家教网 > 初中数学 > 题目详情
操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动(点P与点A不重合),直角的一边始终经过点B,直角的另一边与射线DC相交于点Q.
探究:设A、P两点的距离为x,问当点P在线段AC上滑动时,△PCQ能否成为等腰三角形:
 
(用“能”或“不能”填空).若能,直接写出使△PCQ成为等腰三角形时相应的x的值;若不能,请简要说明理由:
 
分析:首先过点P作PF⊥BC于点F,PE⊥CD于点E,易证得四边形PFCE是正方形,设AP=x,CQ=y,易求得当Q在DC上时,y=1-
2
x,当点Q在边DC的延长线上时,y=
2
x-1,然后分别分析PC=CQ与PQ=QC时的情景,即可求得答案.
解答:解:能.
理由:精英家教网
如图,当Q在DC上时,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠BCD=90°
∴四边形PFCE是矩形,
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∵AP=x,CQ=y,
∵AB=BC=1,
∴AC=
2

∵四边形PFCE是正方形,
∴PC=
2
-x,
∴CE=1-
2
2
x,
∴BF=1-FC=1-(1-
2
2
x)=
2
2
x,
∴EQ=
2
2
x,
∴y=CQ=(1-
2
2
x)-
2
2
x=1-
2
x,
∴y=1-
2
x(0≤x≤
2
2
);
同理:当点Q在边DC的延长线上时,
∵PC=
2
-x,利用勾股定理得出:EC=1-
2
2
x,
EQ=BF=MP=
2
2
x,
∴CQ=EQ-EC=
2
x-1,
∴y=
2
x-1(
2
2
≤x≤
2
);
∴①当点P与点A重合,点Q与点D重合,这时PQ=QC,△PCQ是等腰三角形,此时x=0;
②当点Q在边DC的延长线上,且CP=CQ时,△PCQ是等腰三角形(如图),此时,QN=PM=
2
2
x,CP=
2
-x,CN=
2
2
CP=1-
2
2
x,
∴CQ=QN-CN=
2
2
x-(1-
2
2
x)=
2
x-1,
2
-x=
2
x-1时,得x=1.
∴当x=0或1时,△PCQ是等腰三角形.
精英家教网
点评:此题考查正方形的性质,直角三角形的性质,等腰三角形的判定与性质以及一次函数的应用等知识.此题综合性很强,难度较大,解题的关键是注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率,注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线上滑动,直角的一边始终经过B点,另一边与射线DC相交于点Q.设AP=x.
(1)当Q点在CD上时,线段PQ与线段PB的大小关系怎样?并证明你的结论;
(2)当Q在CD上时,设四边形PBCQ面积为y,求y与x之间的函数关系,并写出x的取值范围;
(3)当点P在线段AC上滑动,且Q在DC延长线上时,△PCQ能否为等腰三角形?若能,求出x的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•上海)操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).

查看答案和解析>>

科目:初中数学 来源:2009年中考数学全真模拟试卷(9)(解析版) 题型:解答题

(2002•上海)操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).

查看答案和解析>>

同步练习册答案