精英家教网 > 初中数学 > 题目详情
精英家教网如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE重合,如果AD=1,那么DE=
 
分析:根据题意,△ABC是等腰直角三角形,△ABD≌△ACE,AD=1,故AD=AE=1,利用勾股定理可求出DE.
解答:解:因为△ABD与△ACE是互相旋转可得的,
故△ABD≌△ACE.
因为AD=1,
故AD=AE=1,
又可证△ADE是等腰直角三角形,
所以DE=
AD2+AE2
=
2
点评:本题难度较简单,主要考查的是旋转的性质以及勾股定理的相关知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,在等腰直角三角形OAB中,∠OAB=90°,B点在第一象限,A点坐标为(1,0).△OCD与△OAB关于y轴对称.
(1)求经过D,O,B三点的抛物线的解析式;
(2)若将△OAB向上平移k(k>0)个单位至△O′A′B(如图乙),则经过D,O,B′三点的抛物线的对称轴在y轴的
 
.(填“左侧”或“右侧”)
(3)在(2)的条件下,设过D,O,B′三点的精英家教网抛物线的对称轴为直线x=m.求当k为何值时,|m|=
13

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=2x+2与x轴,y轴分别交于A、B两点,点C是在第一象限内此直线上的一个动点,以BC为直角边作如图所示的等腰直角三角形BCD,点E在过A、C、D三点的圆上,且DE⊥BD,连结CE、AD.
(1)找出图中一对相似三角形(不再标记字母),并说明理由;
(2)在C的运动过程中,DE的长度是否改变?若不变,请求出DE的长;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质: 重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点为等腰直角三角形的重心,,直线过点,过 三点分别作直线的垂线,垂足分别为点.              
<1>当直线平行时(图1),请你猜想线段三者之间的数量关系并证明;
<2>当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京二龙路中学九年级第一学期期中测试数学卷 题型:解答题

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质: 重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点为等腰直角三角形的重心,,直线过点,过 三点分别作直线的垂线,垂足分别为点.              
<1>当直线平行时(图1),请你猜想线段三者之间的数量关系并证明;
<2>当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.

查看答案和解析>>

科目:初中数学 来源:2012年苏教版初中数学八年级上5.1函数练习卷(解析版) 题型:选择题

如图,和的是等腰直角三形,,.点B与点D重合,点在同一条直线上,将沿方向平移,至点与点重合时停止.设点之间的距离为x,重叠部分的面积为,则准确反映之间对应关系的图象是( )

 

查看答案和解析>>

同步练习册答案