【题目】如图,在中,点O是AC边上的一个动点,过点O作直线,设MN交的角平分线于点E,交的外角平分线于点F.
求证:;
当点O运动到何处时,四边形AECF是矩形?请说明理由;
在的条件下,给再添加一个条件,使四边形AECF是正方形,那么添加的条件是______.
【答案】(1)见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)∠ACB为直角的直角三角形时.
【解析】
(1)由平行线的性质和角平分线的定义得出∠OCE=∠OEC,∠OCF=∠OFC,得出EO=CO,FO=CO,即可得出结论;
(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;
(3)由正方形的性质得出∠ACE=45°,得出∠ACB=2∠ACE=90°即可.
解:(1)
∵MN∥BC,
∴∠3=∠2,
又∵CF平分∠GCO,
∴∠1=∠2,
∴∠1=∠3,
∴FO=CO,
同理:EO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
由(1)可知,FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,
∴∠AOE=∠ACB
∵∠ACB=90°,
∴∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
故答案为:∠ACB为直角的直角三角形时.
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD,BE之间的数量关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=3,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某竹制品加工厂根据市场调研结果,对该厂生产的一种新型竹制品玩具未来两年的销售进行预测,并建立如下模型:设第t个月,竹制品销售量为P(单位:箱),P与t之间存在如图所示函数关系,其图象是线段AB(不含点A)和线段BC的组合.设第t个月销售每箱的毛利润为Q(百元),且Q与t满足如下关系Q=2t+8(0≤t≤24).
(1)求P与t的函数关系式(6≤t≤24).
(2)该厂在第几个月能够获得最大毛利润?最大毛利润是多少?
(3)经调查发现,当月毛利润不低于40000且不高于43200元时,该月产品原材料供给和市场售最和谐,此时称这个月为“和谐月”,那么,在未来两年中第几个月为和谐月?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AA2A3=___,∠AAnAn+1等于___度.(用含n的代数式表示,n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点在下列结论中:
;;,其中正确的结论有
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③ 8a+7b+2c>0;④若点A(﹣3,y1)、点B( ,y2)、点C( ,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有_______个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.
(1)求AD的长;
(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,抛物线与轴交于点A和点C(2,0),与 轴交于点D,将△DOC绕点O逆时针旋转90°后,点D恰好与点A重合,点C与点B重合.
(1)直接写出点A和点B的坐标;
(2)求和的值;
(3)已知点E是该抛物线的顶点,求证:AB⊥EB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com