精英家教网 > 初中数学 > 题目详情
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)  
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;  
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;  
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
解:(1)由题意得:y=29﹣25﹣x,
∴y=﹣x+4(0≤x≤4);
(2)z=(8+×4)y
=(8x+8)(﹣x+4)
∴z=﹣8x2+24x+32
=﹣8(x﹣2+50
(3)由第二问的关系式可知:当x=时,z最大=50
∴当定价为29﹣1.5=27.5万元时,有最大利润,最大利润为50万元
或:当
z最大值=
∴当定价为29﹣1.5=27.5万元时,有最大利润,最大利润为50万元。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车精英家教网降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)

(1)求的函数关系式;在保证商家不亏本的前提下,写出的取值范围;

(2)假设这种汽车平均每周的销售利润为万元,试写出之间的函数关系式;

(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省泰州市苏陈中学九年级下学期质量检测数学卷 题型:解答题

(本题满分10分)南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)
(1)求的函数关系式;在保证商家不亏本的前提下,写出的取值范围;
(2)假设这种汽车平均每周的销售利润为万元,试写出之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省泰州市九年级下学期质量检测数学卷 题型:解答题

(本题满分10分)南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)

(1)求的函数关系式;在保证商家不亏本的前提下,写出的取值范围;

(2)假设这种汽车平均每周的销售利润为万元,试写出之间的函数关系式;

(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?

 

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(23):20.5 二次函数的一些应用(解析版) 题型:解答题

南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案