精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°A30°,点DAB上,以BD为直径的⊙OAC于点E,连接DE并延长,交BC的延长线于点F

1)求证:BDF是等边三角形;

2)连接AFDC,若BC3,写出求四边形AFCD面积的思路.

【答案】1)证明见解析;2思路见解析.

【解析】试题分析:(1)连接OE,因AC切⊙O于点E,根据切线的性质可得∠OEA=90° ;再由∠A=30°,∠ACB=90°,根据三角形的内角和定理可得∠AOE=60°,∠B=60°因OD=OE,可得∠ODE=∠OED=60°,所以∠F=∠B=∠ODE,即可判断△BDF是等边三角形 ;(2)如图,作DH⊥AC于点H,求四边形AFCD的面积思路有以下几步:①由∠ACB=90°,∠BAC=30°,BC=3,可求AB,AC的长;②由∠AEO=90°,∠OAE=30°,可知AO=2OE,可求AD,DB,DH的长; ③由(1)可知BF=BD,可求CF的长; ④由AC,DH,CF的长可求四边形AFCD的面积.

试题解析:

1)证明:连接OE

∵AC⊙O于点E

,

, .

∴△BDF是等边三角形.

2)如图DH⊥AC于点H.

∠ACB=90°∠BAC=30°BC=3,可求ABAC的长;

∠AEO=90°∠OAE=30°,可知AO=2OE,可求ADDBDH的长;

由(1)可知BF=BD,可求CF的长;

ACDHCF的长可求四边形AFCD的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】马航MH370 客机“失联”,我国“海巡01号”前往搜寻。如图某天上午9时,“海巡01号” 轮船位于A处,观测到某小岛P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到小岛P位于该船的南偏西30°方向,求此时轮船所处位置B与小岛P的距离?(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】16的平方根是(
A.2
B.4
C.﹣2或2
D.﹣4或4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果二次三项式x2+px-6可以分解为(x+q)·(x-2),那么(p-q)2的值为(  )

A. 2 B. 3 C. 4 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B坐标分别为A(0,a),B(b,a),且实数a,b满足(a﹣3)2+|b﹣5|=0,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积;
(2)在y轴上是否存在一点M,连接MC,MD,使SMCD=S四边形ABDC?若存在这样一点,求出点M的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在等边三角形ABC中,点E在线段AB上,点D在CB的延长线上,且AE=BD,试确定线段DE与EC的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正数的两个不同的平方根是2a﹣7a+4,则a=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)
(2)| |+ +2( ﹣1)
(3) (2﹣ )+ + ).

查看答案和解析>>

同步练习册答案