精英家教网 > 初中数学 > 题目详情
4.计算:(-1)2-$\sqrt{4}$×(2013-π)0+($\frac{1}{3}$)-1=2.

分析 直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.

解答 解:(-1)2-$\sqrt{4}$×(2013-π)0+($\frac{1}{3}$)-1
=1-2×1+3
=2,
故答案为:2.

点评 此题主要考查了实数运算,正确化简各数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).
(1)求直线l1,l2的表达式.
(2)点C为线段OB上一动点(点C不与点O,B重合),CD∥y轴交直线l2于点D,CE∥l2交y轴于点E.
①若点C的横坐标为m,求四边形AECD的面积S与m的函数关系式;
②当S最大时,求出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列实数中$\sqrt{7}$,-(-π),|-3|,3中,最大的是(  )
A.$\sqrt{7}$B.-(-π)C.|-3|D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知:如图,在菱形ABCD中,∠BAD=44°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于(  )
A.112°B.114°C.116°D.118°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是(  )
A.y=3(x-2)2+2B.y=3(x+2)2-2C.y=3(x-2)2+2D.y=3(x+2)2+2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知抛物线m:y=ax2-6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=-$\frac{1}{2}$x+$\frac{7}{2}$与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(-7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是(  )
A.$\frac{25}{2}$mmB.$\frac{25}{2}$$\sqrt{3}$mmC.$\frac{25}{4}$mmD.$\frac{25}{4}$$\sqrt{3}$mm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,关于y=-x2+bx+c的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.
(1)求抛物线的解析式及顶点D的坐标;
(2)在图中求一点G,使以G、A、E、C为顶点的四边形是平行四边形,请直接写出点G的坐标;
(3)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求该点坐标;
(4)直线DE上是否存在点P到直线AD的距离与到轴的距离相等?若存在,请求出点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=x2-mx-3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.
(1)用含m的代数式表示BE的长.
(2)当m=$\sqrt{3}$时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案