精英家教网 > 初中数学 > 题目详情
如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.
(1)若∠E=30°,求证:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的长.
(1)证明:取AB中点O,△ABC是Rt△,AB是斜边,O是外接圆心,连接CO,
∴BO=CO,∠BCO=∠OBC,
∵BC是∠DBE平分线,
∴∠DBC=∠CBA,
∴∠OCB=∠DBC,
∴OCDB,(内错角相等,两直线平行),
OC
BD
=
CE
DE
,把比例式化为乘积式得BD•CE=DE•OC,
∵OC=r,
∴BD•CE=DE•r.
∵∠D=90°,∠E=30°,
∴∠DBE=60°,
∴∠CBE=
1
2
∠DBE=30°,
∴∠CBE=∠E,
∴CE=BC,
∴BC•BD=r•ED.

(2)BD=3,DE=4,根据勾股定理,BE=5,
设圆的半径长是r,则OC=OA=r,
∵OCDB,
∴△OCEBDE,
OC
BD
=
OE
BE
=
CE
DE
,即
r
3
=
OE
5
=
CE
4

解得:OE=
5
3
r,CE=
4
3
r.
CH=
OC•CE
OE
=
4
5
r,
∵BC平分∠DBE交DE于点C,则△BDC≌△BHC,
∴BH=BD=3,
则HE=2.
∴CD=CH=
4
5
r.
在直角△CHE中,根据勾股定理得:CH2+EH2=CE2
即(
4
5
r)2+22=(
4
3
r)2,解得:r=
15
8

则AE=BE-2r=5-
15
4
=
5
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,PB与⊙O相切于B点,C为⊙O上的点,OPAC.试判断PC与⊙O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠ACB=90°,BD是⊙O的直径,弦DE与AC交于点E,且BD=BF.
(1)求证:AC是⊙O的切线;
(2)若BC=6,AD=4,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度为每秒2个单位,点Q沿AD向终点D运动,速度为每秒1个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t秒.
(1)动点P与Q哪一点先到达自己的终点?此时t为何值;
(2)当O<t<2时,写出△PQA的面积S与时间t的函数关系式;
(3)以PQ为直径的圆能否与CD相切?若有可能,求出t的值或t的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个同心圆的半径分别为3cm和4cm,大圆的弦BC与小圆相切,则BC=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长线于点F,
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.
(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)若tanE=
3
3
,BC=
4
3
3
,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA、PB是⊙O的两条切线,A、B是切点,连接AB,直线PO交AB于M.请你根据圆的对称性,写出△PAB的三个正确的结论.

查看答案和解析>>

同步练习册答案