精英家教网 > 初中数学 > 题目详情
抛物线的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.
(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.

【答案】分析:(1)利用配方法将二次函数整理成顶点式即可,再利用点在直线上的性质得出答案即可;
(2)首先利用点N在抛物线上,得出N点坐标,再利用勾股定理得出NF2=NC2+FC2,进而得出NF2=NB2,即可得出答案;
(3)求点M的坐标,需要先求出直线PF的解析式.首先由(2)的思路得出MF=MA,然后连接AF、FB,通过证明△PFA∽△PBF,利用相关的比例线段将PA•PB的值转化为PF的值,进而求出点F的坐标和直线PF的解析式,即可得解.
解答:解:(1)y=x2+x+m=(x+2)2+(m-1)
∴顶点坐标为(-2,m-1)
∵顶点在直线y=x+3上,
∴-2+3=m-1,
得m=2;

(2)过点F作FC⊥NB于点C,
∵点N在抛物线上,
∴点N的纵坐标为:a2+a+2,
即点N(a,a2+a+2)
在Rt△FCN中,FC=a+2,NC=NB-CB=a2+a,
∴NF2=NC2+FC2=(a2+a)2+(a+2)2
=(a2+a)2+(a2+4a)+4,
而NB2=(a2+a+2)2
=(a2+a)2+(a2+4a)+4
∴NF2=NB2
NF=NB;

(3)连接AF、BF,
由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,
∴∠MAF=∠MFA,
∵MA⊥x轴,NB⊥x轴,
∴MA∥NB,
∴∠AMF+∠BNF=180°
∵△MAF和△NFB的内角总和为360°,
∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,
∵∠MAB+∠NBA=180°,
∴∠FBA+∠FAB=90°,
又∵∠FAB+∠MAF=90°,
∴∠FBA=∠MAF=∠MFA,
又∵∠FPA=∠BPF,
∴△PFA∽△PBF,
=,PF2=PA×PB=
过点F作FG⊥x轴于点G,在Rt△PFG中,
PG==
∴PO=PG+GO=
∴P(-,0)
设直线PF:y=kx+b,把点F(-2,2)、点P(-,0)代入y=kx+b,
解得k=,b=
∴直线PF:y=x+
解方程x2+x+2=x+
得x=-3或x=2(不合题意,舍去),
当x=-3时,y=
∴M(-3,).
点评:考查了二次函数综合题,在该二次函数综合题中,融入了勾股定理、相似三角形等重点知识,(3)题通过构建相似三角形将PA•PB转化为PF的值是解题的关键,也是该题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点精英家教网,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=
3
3
x+2上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、精英家教网D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=
3
3
x+2
3
上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、设a,b,c为实数,且a≠0.抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-1上.若A,B,C三点构成一个直角三角形,求这个直角三角形的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若点P(t,t)在抛物线上,则点P叫做抛物线的不动点.设抛物线y=ax2+x+2经过点(-1,0)
(1)求这条抛物线的顶点和不动点的坐标;
(2)将这条抛物线进行平移,使其只有一个不动点.证明平移后的抛物线的顶点在直线4x-4y-1=0上.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-4x-a,下列说法中错误的个数是(  )
①若图象与x轴有交点,则a≤4
②若该抛物线的顶点在直线y=2x上,则a的值为-8
③当a=-3时,不等式x2-4x+a>0的解集是1<x<3
④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1
⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.

查看答案和解析>>

同步练习册答案