精英家教网 > 初中数学 > 题目详情
3.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD.
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等)
∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°  (两直线平行,同旁内角互补)
∵∠BAC=80°,
∴∠AGD=100°.

分析 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.

解答 解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠2,
∴∠1=∠3(等量代换),
∴AB∥DG(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°  (两直线平行,同旁内角互补),
∵∠BAC=80°,
∴∠AGD=100°,
故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,100°.

点评 本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.小明、小亮在高为8米的路灯下做游戏,他们发现身高为1.6米的小明在路灯下的影长为1米,身高为1.55米的小亮要想在该路灯下得到一个3.1米长的影子,而且两人的影子要保证在同一直线上,那么两人应该相距8.9或16.9米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是平行四边形.
(2)证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简求值
求3x2y+{-2x2y-[-2xy+(x2y-4x2)]-xy}的值,其中x=-2,y=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.选择合适的方法解下列方程组
(1)$\left\{\begin{array}{l}{5x-2y-4=0}\\{x+y-5=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x-y-1)=3(1-y)-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算
(1)-23+(+58)-(-5)
(2)($\frac{1}{2}$+$\frac{5}{6}$-$\frac{7}{12}$)×(-36)
(3)-22×(-$\frac{1}{2}$)+8÷(-2)2    
(4)(-1)2009-(1-0.5)×$\frac{1}{3}$×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,反比例函数y=$\frac{k}{x}$(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)求直线AC的解析式;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)($\frac{1}{2}$-$\frac{5}{9}$+$\frac{7}{12}$)×|-36|
(2)19-(-4)÷0.25
(3)-22-(-1)2002×($\frac{1}{3}$-$\frac{1}{2}$)÷$\frac{1}{6}$+(-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知二次函数y=ax2+bx+2的图象过A(-1,0)和B(5,-3)两点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为C,求点C的坐标;
(3)二次函数的图象与y轴的交点为D,点E在第一象限内二次函数的图象上,点F在线段CD上,当△ACD∽△FDE时,求EF的长.

查看答案和解析>>

同步练习册答案