【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是 .
【答案】
(1),(5,3),(3,5)
(2)解:∵四边形ABCD是正方形,
∴AB=BC∠A=∠ABC=90°,
∴∠EAF+∠EBC=90°,
∵BE⊥CF,
∴∠EBC+∠BCF=90°,
∴∠EBF=∠BCF,
∴△ABE≌△BCF,
∴BE=CF,
∴四边形BCEF是准矩形
(3) ; ;
【解析】(1)①∵∠ABC=90,
∴BD= ,
故答案为 ,
②∵A(0,3),B(5,0),
∴AB= =,
设点P(m,n),A(0,0),
∴OP= =,
∵m,n都为整数,
∴点P(3,5)或(5,3);
故答案为P(3,5)或(5,3);
( 3 ) ; ;
∵∠ABC=90°,∠BAC=60°,AB=2,
∴BC=2 ,AC=4,
准矩形ABCD中,BD=AC=4,
①当AC=AD时,如图1,作DE⊥AB,
∴AE=BE AB=1,
∴DE= ,
∴S准矩形ABCD=S△ADE+S梯形BCDE
= DE×AE+ (BC+DE)×BE
= × + (2 + )×1
= + ;
②当AC=CD时,如图2,
作DF⊥BC,
∴BD=CD,
∴BF=CF= BC= ,
∴DF= ,
∴S准矩形ABCD=S△DCF+S梯形ABFD
= FC×DF+ (AB+DF)×BF
= × × + (2+ )×
= + ;
③当AD=CD,如图3,
连接AC中点和D并延长,连接BG,过B作BH⊥DG,
∴BD=CD=AC=4,
∴AG= AC=2,
∵AB=2,
∴AB=AG,
∵∠BAC=60°,
∴∠ABG=60°,
∴∠CBG=30°
在Rt△BHG中,BG=2,∠BGH=30°,
∴BH=1,
在Rt△BHM中,BH=1,∠CBH=30°,
∴BM= ,HM= ,
∴CM= ,
在Rt△DHB中,BH=1,BD=4,
∴DH= ,∴DM=DH﹣MH= ﹣ ,
∴S准矩形ABCD=S△DCF+S四边形AMCD
= BM×AB+ AC×DM
= × ×2+ ×4×( ﹣ )
=2 ;
故答案为 ; ; .
(1)①中易由勾股定理可得AC=,再由准矩形定义易得BD=AC=
②中由勾股定理可得AB=,所以OP=,又m,n为整数,可得P点只能为(3,5)或(5,3)。
(2)由准矩形定义只需证有一个直角以及对角线相等即可,由于有正方形ABCD可得∠FBC=90°;所以只需证对角线相等,由正方形性质易得△ABE≌△BCF,证得BE=CF,准矩形得证。
(3)由准矩形ABCD中,∠ABC=90°可知,只需证明对角线相等即可,又由△ADC为等腰三角形时所以需要分情况讨论,即AD=AC;CD=CA;DA=DC三种情况,又∠BAC=60°,AB=2;所以由割补法,可计算得到共有三种结果。
科目:初中数学 来源: 题型:
【题目】如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于( )
A. 110° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.
(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.
甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件;
乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球;
(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为 ,你认同吗?请画树状图或列表计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的 ,请完成下列问题:
(1)求本次抽取的学生人数;
(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图;
(3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在△ABC中,已知∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.请写出图中的等腰三角形,并找出EF与BE、CF间的关系;
(2) 如图②中∠ABC的平分线与三角形ABC的外角∠ACG的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.图中有等腰三角形吗?如果有,请写出来.EF与BE、CF间的关系如何?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店( )
A.盈利了 B.亏损了 C.不赢不亏 D.盈亏不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.
(1)在图中标出点D,并画出该四边形的另两条边;
(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一批抗疫物资运往武汉,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:
甲种货车(辆) | 乙种货车(辆) | 总量(吨) | |
第一次 | 4 | 5 | 31 |
第二次 | 3 | 6 | 30 |
(1)甲、乙两种货车每辆分别能装货多少吨?
(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?请全部设计出来.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com