A. | AE=CD | B. | AE>CD | C. | AE<CD | D. | 无法确定 |
分析 根据等边三角形的性质求出△ABE≌△CBD,再根据全等三角形的性质解答即可.
解答 解:AE=CD,理由如下:
∵△ABC和△BDE分别是等边三角形,
∴AB=CB,BE=BD,
∴∠ABC=∠DBE=60°,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
$\left\{\begin{array}{l}{AB=CB}\\{∠ABE=∠CBD}\\{BE=BD}\end{array}\right.$,
∴△ABE≌△CBD(SAS),
∴AE=CD.
故选A.
点评 本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com