分析 (1)本题要分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可.
(2)分别求出PQ把△ABC的周长分成的两部分的周长,即可证得在0<t<3范围内,t取任何值,PQ始终把△ABC的周长分成1:2两部分.
解答 解:(1)根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=$\frac{1}{2}$BP,
即t=$\frac{1}{2}$(3-t),t=1(秒),
当∠BPQ=90°时,BP=$\frac{1}{2}$BQ,
3-t=$\frac{1}{2}$t,t=2.
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(2)∵AP=tcm,BQ=tcm,
∴PB=CQ=3-t,
∵PB+BQ=3-t+t=3,PA+QC+AC=t+3-t+3=6,
∴当0<t<3范围内,t取任何值,PQ始终把△ABC的周长分成1:2两部分.
点评 本题主要考查了直角三角形的判定、图形周长的求法、直角三角形的性质等知识点.考查学生数形结合的数学思想方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com