13£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎABCD¶¥µãD£¨-3£¬2£©£¬B£¨1£¬0£©£¬CD¡ÎxÖᣬ½«Õý·½ÐÎABCDÏòÓÒƽÒÆm¸öµ¥Î»£¬µÃÕý·½ÐÎA¡äB¡äC¡äD¡ä£®µ± m=4ʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó¹ýÏ߶ÎC¡äD¡äµÄÖеãE£¬ÓëÏ߶ÎB¡äC¡ä½»ÓÚµãF£®
£¨1£©Çó·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k£¾0£©µÄ½âÎöʽ£®
£¨2£©Æ½Òƹý³ÌÖУ¬Èô·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó·Ö±ðÓëÏ߶ÎC¡äD¡ä¡¢B¡äC¡äͬʱÓн»µã£®Ö±½Óд³ömµÄÈ¡Öµ·¶Î§3¡Üm¡Ü5£»ÆäÖУ¬µ±m=4ʱ£¬µãD¡äµÄ×ø±êΪ£¨1£¬2£©£®
£¨3£©·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷EFPµÄÃæ»ýµÈÓÚ¡÷EFC¡äµÄÃæ»ý£¿Èô´æÔÚÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÇó³öEµã×ø±ê£¬´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽ¼´¿É£»
£¨2£©¸ù¾Ý·´±ÈÀýº¯Êýy=$\frac{4}{x}$£¨x£¾0£©µÄͼÏó¹ýµãC¡äʱm×îС£¬¾­¹ýµãD¡äʱm×î´ó¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÏÈÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßEFµÄ½âÎöʽ£¬ÔÙÇó³ö¹ýµãC¡äÇÒÓëÖ±ÏßEFƽÐеÄÖ±Ïߣ¬¸ù¾Ýͬµ×µÈ¸ßµÄÈý½ÇÐÎÃæ»ýÏàµÈÇóÇó³ö´ËÖ±ÏßÓë·´±ÈÀýº¯ÊýµÄ½»µã¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßµãEǡΪÏ߶ÎC¡äD¡äµÄÖе㣬
¡àC¡ä£¨3£¬2£©£¬D¡ä£¨1£¬2£©£¬
¡àµãE£¨2£¬2£©£¬
°ÑE£¨2£¬2£©´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©£¬µÃk=4£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{4}{x}$£»

£¨2£©¡ß·´±ÈÀýº¯Êýy=$\frac{4}{x}$£¨x£¾0£©µÄͼÏó·Ö±ðÓëÏ߶ÎC¡äD¡ä¡¢B¡äC¡äͬʱÓн»µã£¬
¡à·´±ÈÀýº¯Êýy=$\frac{4}{x}$£¨x£¾0£©µÄͼÏó¹ýµãC¡ä£¬
¡ßµãC¡äµÄ×Ý×ø±êΪ2£¬
¡àx=2£¬
¡àC¡ä£¨2£¬2£©£®
¡ßC£¨-1£¬2£©£¬
¡àm=3£®
µ±µãD¡äÒƶ¯µ½£¨2£¬2£©Ê±£¬m×î´ó£®
¡ßD£¨-3£¬2£©£¬
¡àm=2+3=5£¬
¡à3¡Üm¡Ü5£»
¡ßD£¨-3£¬2£©£¬
¡àµ±m=4ʱ£®-3+4=1£¬
¡àD£¨1£¬2£©£®
¹Ê´ð°¸Îª£º3¡Üm¡Ü5£¬£¨1£¬2£©£»

£¨3£©´æÔÚ£®
ÀíÓÉ£ºÈçͼËùʾ£¬ÉèÖ±ÏßEFµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
¡ßµãE£¨2£¬2£©£¬µãF£¨3£¬$\frac{4}{3}$£©£¬
¡à$\left\{\begin{array}{l}2=2k+b\\ \frac{4}{3}=3k+b\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}k=-\frac{2}{3}\\ b=\frac{10}{3}\end{array}\right.$£¬
¡àÖ±ÏßEF½âÎöʽy=-$\frac{2}{3}$x+$\frac{10}{3}$£®
¹ýC¡äµãÓëEFƽÐеÄÖ±Ïßy=-$\frac{2}{3}$x+4£¬
¡à$\left\{\begin{array}{l}y=-\frac{2}{3}x+4\\ y=\frac{4}{x}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x}_{1}=3+\sqrt{3}\\{x}_{2}=3-\sqrt{3}\end{array}\right.$£¬
¡ßµ±x=3+$\sqrt{3}$ʱ£¬y=$\frac{4}{3+\sqrt{3}}$=2-$\frac{2\sqrt{3}}{3}$£»µ±x=3-$\sqrt{3}$ʱ£¬y=$\frac{4}{3-\sqrt{3}}$=2+$\frac{2\sqrt{3}}{3}$£¬
¡àP£¨3+$\sqrt{3}$£¬2-$\frac{2\sqrt{3}}{3}$£©£¬P¡ä£¨3-$\sqrt{3}$£¬2+$\frac{2\sqrt{3}}{3}$£©£¬

µãÆÀ ±¾Ì⿼²éµÄÊÇ·´±ÈÀýº¯Êý×ÛºÏÌ⣬Éæ¼°µ½·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌص㡢Õý·½ÐεÄÐÔÖʼ°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽµÈ֪ʶ£¬ÄѶÈÊÊÖУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬¡÷ABCÄÚ½ÓÓÚ¡ÑO£¬ABΪOµÄÖ±¾¶£¬¡ÏCAB=60¡ã£¬ÏÒADƽ·Ö¡ÏCAB£¬ÈôAD=3£¬ÔòAC=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¡÷ABCÔÚƽÃæÖ±½Ç×ø±êϵxOyÖеÄλÖÃÈçͼËùʾ£®£¨²»Ð´½â´ð¹ý³Ì£¬Ö±½Óд³ö½á¹û£©
£¨1£©Èô¡÷A1B1C1Óë¡÷ABC¹ØÓÚÔ­µãO³ÉÖÐÐĶԳƣ¬ÔòµãA1µÄ×ø±êΪ£¨2£¬-3£©£»
£¨2£©½«¡÷ABCÏòÓÒƽÒÆ4¸öµ¥Î»³¤¶ÈµÃµ½¡÷A2B2C2£¬ÔòµãB2µÄ×ø±êΪ£¨3£¬1£©£»
£¨3£©½«¡÷ABCÈÆOµã˳ʱÕë·½ÏòÐýת90¡ã£¬ÔòµãC×ß¹ýµÄ·¾¶³¤Îª¦Ð£»
£¨4£©ÔÚxÖáÉÏÕÒÒ»µãP£¬Ê¹PA+PBµÄÖµ×îС£¬ÔòµãPµÄ×ø±êΪ£¨-$\frac{5}{4}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺£¨-1£©2016-cos45¡ã-£¨-$\frac{1}{3}$£©-2+$\sqrt{0.5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÕýÁù±ßÐÎABCDEFµÄ±ß³¤Îª2£¬Ôò¸ÃÕýÁù±ßÐεÄÍâ½ÓÔ²ÓëÄÚÇÐÔ²ËùÐγɵÄÔ²»·Ãæ»ýΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÅ×ÎïÏßy=ax2-4ax+3ºÍÖ±Ïßy=bx-4b+3ÏཻÓÚÒ»¶¨µãA£®
£¨1£©ÇóµãAµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßy=ax2-4ax+3ÓëyÖáµÄ½»µãΪB£¬Ö±Ïßy=bx-4b+3ºÍÖ±ÏßOA·Ö±ðÓëÅ×ÎïÏߵĶԳÆÖáÏཻÓÚµãC£¬D£®ÎÊ·ñ´æÔÚÒ»µãC£¬Ê¹A£¬C£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOBÏàËÆ£¿Èô´æÔÚ£¬Çó³öbµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÉèÅ×ÎïÏßy=ax2-4ax+3¹ýµã£¨2£¬-1£©£¬Ö±Ïßy=bx-4b+3ÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪP£¬Èô¡÷POAµÄÃæ»ýµÈÓÚ$\frac{35}{2}$£¬ÇóaºÍbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¢Ù${£¨\frac{1}{2}£©^{-1}}-\sqrt{{{£¨-3£©}^2}}+£¨¦Ð-3.14£©{\;}^0-\sqrt{2}cos45$¡ã
¢Ú½â·½³Ì£º$\frac{x}{x-2}+\frac{4}{2-x}=-1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈçͼËùʾµÄͼÏóÊÇÅ×ÎïÏßy=ax2+2ax+a2+2µÄÒ»²¿·Ö£¬ËüÓëxÖáµÄÒ»¸ö½»µãAµÄ×ø±êÊÇ£¨-3£¬0£©£¬ÔòËüÓëxÖáµÄÁíÒ»¸ö½»µãµÄ×ø±êΪ£¨1£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ò»´Îº¯Êýy=kx+b£¨k¡¢bΪ³£Êý£¬ÇÒk¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{3}{x}$µÄͼÏó½»ÓÚA£¨1£¬a£©£¬B£¨3£¬1£©Á½µã£®
£¨1£©ÇóµãAµÄ×ø±ê¼°Ò»´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©ÔÚxÖáÉÏÕÒÒ»µãP£¬Ê¹PA+PBµÄÖµ×îС£¬ÇóÂú×ãÌõ¼þµÄµãP£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸