分析 (1)先计算特殊角的三角函数值;然后计算加减法;
(2)先计算特殊角的三角函数值、去绝对值、负整数指数幂;然后计算加减法;
(3)利用公式法进行解答;
(4)先整理为一般式方程,然后利用因式分解法解方程.
解答 解:(1)sin245°-cos60°+tan60°•cos230°,
=$(\frac{\sqrt{2}}{2})^{2}$-$\frac{1}{2}$+$\sqrt{3}$•$(\frac{\sqrt{3}}{2})^{2}$,
=$\frac{1}{2}$-$\frac{1}{2}$+$\frac{3\sqrt{3}}{4}$,
=$\frac{3\sqrt{3}}{4}$;
(2)$\frac{1}{sin45°}$-|1-$\sqrt{2}$|+2-1
=$\frac{1}{\frac{\sqrt{2}}{2}}$-$\sqrt{2}$+1+$\frac{1}{2}$,
=$\sqrt{2}$-$\sqrt{2}$+$\frac{3}{2}$,
=$\frac{3}{2}$;
(3)2x2-2x-5=0,
a=2,b=-2,c=-5,
则△=(-2)2-4×2×(-5)=44.
所以x=$\frac{2±2\sqrt{11}}{4}$=$\frac{1±\sqrt{11}}{2}$,
解得x1=$\frac{1+\sqrt{11}}{2}$,x2=$\frac{1-\sqrt{11}}{2}$;
(4)(2x-1)2-2(2x+1)=0,
4x2-4x+1-4x-2=0,
4x2-8x-1=0,
则a=4,b=-8,c=-1,
所以△=(-8)2-4×4×(-1)=80,
所以x=$\frac{8±4\sqrt{5}}{8}$=$\frac{2±\sqrt{5}}{2}$,
解得x1=$\frac{2+\sqrt{5}}{2}$,x2=$\frac{2-\sqrt{5}}{2}$.
点评 本题考查了特殊角的三角函数值,公式法解一元二次方程方程,注意求根公式x=$\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$中a、b、c所表示的意义.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com