精英家教网 > 初中数学 > 题目详情
9、如图,矩形ABCD中,对角线AC,BD交于点D,过点D作AC的平行线与BC的延长线交于点E,已知∠AOD=130°,则∠DEC的度数为(  )
分析:由矩形对角线的性质可得OA=OD,那么∠OAD=∠ODA,利用三角形的内角和是180°可得∠DAO的度数,易得四边形ACED是平行四边形,那么∠DEC=∠DAO.
解答:解:∵四边形ABCD是矩形,
∴OA=OD,AD∥BC,
∴∠OAD=∠ODA,
∵∠AOD=130°,
∴∠DAO=(180°-130°)÷2=25°.
∵DE∥AC,
∴四边形ACED是平行四边形,
∴∠DEC=∠DAO=25°,故选D.
点评:用到的知识点为:矩形的对角线互相平分且相等;对边平行;等边对等角;三角形的内角和是180°;平行四边形的对角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案