精英家教网 > 初中数学 > 题目详情
9.解方程:
(1)$\frac{1}{x+2}+\frac{4x}{{{x^2}-4}}=\frac{2}{x-2}$   
(2)$\frac{3}{2x-2}+\frac{1}{1-x}$=3.

分析 把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:(1)方程两边乘以(x+2)(x-2)得:x-2+4x=2(x+2),
解得:x=2,
检验:x=2时,(x+2)(x-2)=0,x=2不是原方程的解:
因此,原方程无解.
(2)方程两边乘以2(x-1)得:3-2=6(x-1),
解得:x=$\frac{7}{6}$,
检验:x=$\frac{7}{6}$时,2(x-1)≠0,x=$\frac{7}{6}$是原方程的解:
因此,原方程的解为x=$\frac{7}{6}$.

点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.若方程x2+px+1=0的一个根为2-$\sqrt{3}$,则它的另一个根等于2+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.使$\sqrt{3x-4}$有意义的x的取值范围是(  )
A.x>$\frac{4}{3}$B.x>$\frac{3}{4}$C.x$≥\frac{3}{4}$D.x≥$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.正比例函数y=kx(k≠0)函数值y随x的增大而增大,则y=kx-k的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若点(3、4)在反比例函数y=$\frac{k}{x}$ (k≠0)的图象上,则该函数图象一定经过(  )
A.(2、6)B.(2、-6)C.(4、-3)D.(3、-4)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是(  )
A.a+b>0B.a+b=0C.a+b<0D.a-b>0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是(  )
A.2$\sqrt{2}$πB.$\sqrt{2}$πC.D.2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:$\frac{1}{{{x^2}-4}}-\frac{x}{x+2}=-1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程:$\frac{2}{x+1}-1=\frac{1}{1-x}$.

查看答案和解析>>

同步练习册答案