【题目】如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.
(1)求A、B两点的坐标;
(2)求直线CD的解析式;
(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)A(6,0),B(0,8);
(2)y=x+;
(3)存在,M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(10,3)
【解析】【试题分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,即可得到A、B两点的坐标;
(2)先在Rt△AOB中利用勾股定理求出AB==10,根据线段垂直平分线的性质得到AC=AB=5.再由两角对应相等的两三角形相似证明△ACD∽△AOB,由相似三角形对应边成比例得出,求出AD=,得到D点坐标(﹣,0),根据中点坐标公式得出C(3,4),然后利用待定系数法即可求出直线CD的解析式;
(3)分两种情况进行讨论:①当点Q与点B重合时,先求出BM的解析式为y=x+8,设M(x, x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点Q与点A重合时,先求出AM的解析式为y=x﹣,设M(x, x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.
【试题解析】
(1)解方程x2﹣14x+48=0,
得x1=6,x2=8,
∵OA<OB,
∴A(6,0),B(0,8);
(2)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,
∴AB==10,
∵线段AB的垂直平分线CD交AB于点C,
∴AC=AB=5.
在△ACD与△AOB中,
,
∴△ACD∽△AOB,
∴,即,
解得AD=,
∵A(6,0),点D在x轴上,
∴D(﹣,0).
设直线CD的解析式为y=kx+b,
由题意知C为AB中点,
∴C(3,4),
∵D(﹣,0),
∴,解得,
∴直线CD的解析式为y=x+;
(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.
∵AC=BC=AB=5,
∴以点C、P、Q、M为顶点的正方形的边长为5,且点Q与点B或点A重合.分两种情况:
当点Q与点B重合时,易求BM的解析式为y=x+8,设M(x, x+8),
∵B(0,8),BM=5,
∴(x+8﹣8)2+x2=52,
化简整理,得x2=16,
解得x=±4,
∴M1(4,11),M2(﹣4,5);
当点Q与点A重合时,易求AM的解析式为y=x﹣,设M(x, x﹣),
∵A(6,0),AM=5,
∴(x﹣)2+(x﹣6)2=52,
化简整理,得x2﹣12x+20=0,
解得x1=2,x2=10,
∴M3(2,﹣3),M4(10,3);
综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(10,3).
科目:初中数学 来源: 题型:
【题目】某移动通讯公司提供了A,B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是( )
A. 若通话时间少于120分,则A方案比B方案便宜20元
B. 若通话时间超过200分,则B方案比A方案便宜12元
C. 若通讯费用为60元,则B方案比A方案的通话时间多
D. 若两种方案通讯费用相差10元,则通话时间是145分或185分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.
(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;
(2)求证:AD=BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:
①△ABD和△ACD面积相等;
②∠BAD=∠CAD;
③△BDF≌△CDE;
④BF∥CE;
⑤CE=AE.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为 m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别为81 cm2和144 cm2,则正方形③的边长为( )
A. 225 cm B. 63 cm C. 50 cm D. 15 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.
(1)求证:四边形PBQD为平行四边形.
(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与ACCD的大小关系;
(2)求∠ABD的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com