精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.

(1)求证:OP⊥CD;

(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.

【答案】(1)证明见解析;(2).

【解析】

(1)先判断出RtODPRtOCP,得出∠DOP=COP,即可得出结论;

(2)先 求出∠COD=60°,得出OCD是等边三角形,最后用锐角三角函数即可得出结论.

(1)证明:如图,连接OC,OD,OC=OD.

PD,PC是⊙O的切线,

∴∠ODP=∠OCP90°.

RtODPRtOCP中,

RtODPRtOCP

∴∠DOP=∠COP.

ODOC

OPCD.

(2)连接AD,BC如图所示,则OA=OD=OC=OB=2,

∴∠ADO=∠DAO50°

BCO=∠CBO70°

∴∠AOD80°,∠BOC40°

∴∠COD60°.

ODOC

∴△COD是等边三角形.

(1)知,∠DOP=COP=30°,

RtODP中,OP=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为m2),种草所需费用1(元)与m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+300000≤≤1000).

(1)请直接写出k1k2和b的值;

(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;

(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理解:

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳市某校九年级有500名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A、B、C、D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.

成绩频数条形统计图 成绩频数扇形统计图

(1)求抽取参加体能测试的学生人数;

(2)补全条形统计图;

(3)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人?(精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD下方一点,将PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到PEA,连接EB,问:ABE是什么特殊三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74cos48°≈0.67tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).

(1)求直线y=kx+m的表达式;

(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点Px轴上一点,若AB=BP,直接写出P点坐标.

查看答案和解析>>

同步练习册答案