精英家教网 > 初中数学 > 题目详情
(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于N.试判定线段MD与MN的大小关系;
(2)若将上述条件中的“M是AB的中点”改为“M是AB边上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.
证明:(1)取AD的中点H,连接HM,
∵四边形ABCD是正方形,M为AB的中点,
∴BM=HD=AM=AH,
∴△AMH为等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分线.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∠HDM=∠BMN
DH=MB
∠DHM=∠MBN

∴△DHM≌△MBN(ASA),
∴DM=MN;

(2)DM=MN仍成立.
如图1,在AD上取一点H,使DH=MB,连接HM,
∵四边形ABCD是正方形,BN平分∠CBE,DM⊥MN,
∴∠MBN=135°,
∵AH=AM,
∴∠AHM=45°
∴∠DHM=135°,
∠BMN+∠AMD=90°,∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN.
如图2,若点M在AB的延长线上,
则在AD延长线上取点H,使DH=BM,连接HM.
∵DM⊥MN,即∠DMN=90°,
∴∠DMA+∠NME=90°,
又∵∠DMA+∠ADM=90°,
∴∠NME=∠ADM,
∴∠MDH=∠NMB(等角的邻补角相等),
又∵BN为∠CBE的平分线,且∠CBE=90°,
∴∠NBM=45°,
∵AD=AB,DH=BM,
∴AD+DH=AB+BM,即AH=AM,且∠A=90°,
∴△AMH为等腰直角三角形,
∴∠MHD=45°,
∴∠MHD=∠NBM,
又∵DH=BM,∠MDH=∠NMB,
∴△DHM≌△MBN(ASA),
∴DM=MN.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在正方形ABCD的边BC的延长线上取一点E,使EC=AC,连接AE交CD于F,那么∠AFC等于______°;若AB=2,那么△ACE的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点M、E分别在正方形ABCD的边AB、BC上,以M为圆心,ME的长为半径画弧,交AD边于点F.当
∠EMF=90°时,求证:AF=BM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若正方形的对角线长为a,那么它的对角线的交点到它的边的距离为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中有一点P,边长为4,且△PBC是等边三角形,则∠APD=______,
S△APD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,对角线AC,BD交于点O,∠ACB的平分线CE交BO于点E,过点B作BF⊥CE,垂足为F,交AC于点G,则
BF
CE
=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=
5
.则正方形ABCD的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G
(1)若AB=8,BF=16,求CE的长;
(2)求证:AE=BE+DG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案