精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF,CF,∠D=∠BFC.

(1)求证:AD是⊙O的切线;
(2)若AC=8,tanB =,求AD的长.

(1)证明略
(2)
(1)证明:∵ OD⊥AC于点E,
∴ ∠OEA=90°,∠1+∠2=90°.
∵ ∠D=∠BFC,∠BFC=∠1,
∴ ∠D +∠2=90°,∠OAD =90°.
∴ OA⊥AD于点A.………………………1分
∵OA是⊙O的半径,
∴AD是⊙O的切线. ……………………2分
(2)解:∵OD⊥AC于点E,AC是⊙O的弦,AC=8,
.………………………………………………………3分
∵∠B=∠C,tanB =
∴ 在Rt△CEF中,∠CEF=90°,tanC =

设⊙O的半径为r,则
在Rt△OAE中,由勾股定理得 ,即
解得 r =5.……………………………………………………………………4分
∴ 在Rt△OAE中,
∴ 在Rt△OAD中,. ………………………5分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,已知,AB是⊙的直径,点C,D在⊙上,∠ABC=50°,则∠D为
A.50°B.45°C.40°D.30°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆半径为3cm,那么大圆半径为______cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆和半圆,其中分别为两个半圆的圆心. F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.

(1)连结,证明:
(2)如图二,过点A分别作半圆和半圆的切线,交BD的延长线和CE的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;

(3)如图三,过点A作半圆的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA. 证明:PA是半圆的切线

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


如图,已知:内接于⊙O,是⊙O的切线,的延长线交于点

(1)若∠B=2∠D ,求∠D的度数;
(2)在(1)的条件下,若,求⊙O的半径

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.

(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线;
(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似.若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。

(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为 ▲ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为___________.(用含的代数式表示)

查看答案和解析>>

同步练习册答案