精英家教网 > 初中数学 > 题目详情
如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.
(1)抛物线的解析式是y=x2-6x+5,y=ax2+bx+c关于y轴对称的二次函数解析式为:y=ax2-bx+c.

(2)当y=0时x2-6x+5=0x1=1x2=5所以A(1,0)B(5,0)C是AB的中点所以C(3,0)又因为OB=OM=5?△OMB是等腰△过0作OE⊥MB?OECD因为∠EOB=45度,所以∠DCB=45度?CD=
2
Rt△OMC中OM=5,OC=3所以MC=
52+32
=
34

∴sin∠CMB=
CD
MC
=
2
34
=
17
17


(3)
i2-i+z=0
j2-j+z=0
,即
i=j(舍)
j=1-i

又因为N在y=kx+b上
又∵j=ki+bM在y=kx+b上,
∴b=5,
∴j=ki+5?1-i=ki+5?k=-1-
4
i

又∵N在y=x2-6x+5上,
所以
j=i2-6i+5
j=1-i

i1=1
i2=4
,即
k1=-5
k2=-2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-mx+2m-
7
2

(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过坐标原点O及A(-2
3
,0),其顶点为B(m,3),C是AB中点,点E是直线OC上的一个动点(点E与点O不重合),点D在y轴上,且EO=ED.
(1)求此抛物线及直线OC的解析式;
(2)当点E运动到抛物线上时,求BD的长;
(3)连接AD,当点E运动到何处时,△AED的面积为
3
3
4
?请直接写出此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,半径分别为3
3
3
的⊙O1和⊙O2外切于原点O,在x轴上方的两圆的外公切线AB与⊙O1和⊙O2分别切于点A、B,直线AB交y轴于点C.O2D⊥O1A于点D.
(1)求∠O1O2D的度数;
(2)求点C的坐标;
(3)求经过O1、C、O2三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使△PO1O2为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+2与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(2,1),点D的横坐标为
1
2

(1)求点D的坐标;
(2)求抛物线的函数表达式;
(3)抛物线在x轴上方部分是否存在一点P,使△POA的面积比△POB的面积大4?如果存在,求出点P的坐标;如果不存在,说明理由.
(4)将题中的抛物线y=ax2+bx沿x轴平移,当抛物线经过点B时,请直接写出平移的方向和距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4
3
,PC=8
3
,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=
3
时,求tanB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm.窗户的适光面积为ym2,y与x的函数图象如图2所示.
(1)当窗户透光面积最大时,求窗框的两边长;
(2)要使窗户透光面积不小于1m2.则窗框的一边长x应该在什么范围内取值?

查看答案和解析>>

同步练习册答案