精英家教网 > 初中数学 > 题目详情
关于x的二次函数y=a(x+1)(x-m),其图象的对称轴在y轴的右侧,则实数a、m应满足(  )
A.a>0,m<-1B.a>0,m>1C.a≠0,0<m<1D.a≠0,m>1
∵a(x+1)(x-m)=0,则x=-1或x=m,且a≠0,
∴二次函数y=a(x+1)(x-m)的图象与x轴的交点为(-1,0)、(m,0),
∴二次函数的对称轴x=
-1+m
2

∵函数图象的对称轴在y轴的右侧,
-1+m
2
>0,
解得:m>1,
故选:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

抛物线y=
1
2
x2-2x+
3
2
与x轴交于点A(x1,0),B(x2,0),则AB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一抛物线y=(x-h)2+2-h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:______或______,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象经过A(2,4),其顶点的横坐标是
1
2
,它的图象与x轴交点为B(x1,0)和(x2,0),且x12+x22=13.求:
(1)此函数的解析式,并画出图象;
(2)在x轴上方的图象上是否存在着D,使S△ABC=2S△DBC?若存在,求出D的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y______0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根______;
(2)写出不等式ax2+bx+c>0的解集______;
(3)写出y随x的增大而减小的自变量x的取值范围______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=(  )
A.1B.-1C.-2D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c(a≠0)的图象与X轴的交点的横坐标为-1和3,给出下列说法:(1)abc<0;(2)方程ax2+bx+c=0的根为x1=-1,x2=3;(3)4a+2b+c>0;(4)8a+c<0;其中正确的结论的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案