精英家教网 > 初中数学 > 题目详情
20.计算:|-3|+2sin30°-$\sqrt{9}$.

分析 原式利用绝对值的代数意义,特殊角的三角函数值,以及算术平方根定义计算即可得到结果.

解答 解:原式=3+2×$\frac{1}{2}$-3=3+1-3=1.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知非零实数a,b满足|2a-4|+|b+2|+$\sqrt{(a-3){b^2}}$+4=2a,求a-b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一次函数的图象与直线y=-$\frac{1}{3}$x平行,且与直线y=2x-6的交点在x轴上,那么这个一次函数的解析式为y=-$\frac{1}{3}$x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.关于x的分式方程$\frac{5}{x}=\frac{a}{x-2}$有解,则字母a的取值范围是a≠5,a≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.函数y=2x+4的图象与x轴,y轴的交点为A,B,若AB=2$\sqrt{5}$.则原点O到AB的距离是(  )
A.$\sqrt{5}$B.$\frac{4\sqrt{5}}{5}$C.2$\sqrt{5}$D.$\frac{2\sqrt{5}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.一次函数y=kx+b的图象经过点(1,-2),并平行于直线y=-6x+22,那么此一次函数解析式为y=-6x+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).
(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为$\frac{40}{9}$cm或20cm;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.求下列各式中的x
(1)$\frac{1}{2}(x-1)^{2}=18$;
(2)(x-7)3=27.

查看答案和解析>>

同步练习册答案