精英家教网 > 初中数学 > 题目详情
18.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35度.(直接写出结果)
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?

分析 (1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;
(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;
(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可.

解答 解:(1)如图1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=$\frac{1}{2}$∠AOC=75°,
∠NOC=$\frac{1}{2}$∠BOC=30°,
∴∠MON=∠MOC-∠NOC=75°-30°=45°;

(2)如图2,∵∠AOB=70°,∠BOC=60°,
∴∠AOC=70°+60°=130°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=$\frac{1}{2}$∠AOC=65°,∠NOC=$\frac{1}{2}$∠BOC=30°,
∴∠MON=∠MOC-∠NOC=65°-30°=35°.   
故答案为:35.

(3)如图3,∵∠AOB=α,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=α+β,
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(α+β),
∠NOC=$\frac{1}{2}$∠BOC=$\frac{1}{2}$β,
∴∠MON=∠MOC-∠NOC=$\frac{1}{2}$(α+β)-$\frac{1}{2}$β=$\frac{1}{2}$α.

点评 本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC-∠NOC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知⊙O上两个定点A、B和两个动点C、D,AC与BD交于点E.
(1)如图,求证:EA•EC=EB•ED;
(2)知图,若$\widehat{AB}$=$\widehat{BC}$,AD是⊙O的直径,求证:AD•AC=2BD•BC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若a=1+$\sqrt{2}$,b=1-$\sqrt{2}$,则a与b的关系是(  )
A.互为倒数B.互为相反数C.相等D.互为负倒数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.江门市统计局与国家统计局江门调查队联合发布2015年江门市国民经济和社会发展统计公报.公报显示,经初步核算,2015年江门全市实现地区生产总值(GDP)2420亿元,而2013年生产总值(GDP)为2000亿元,如果2014、2015年江门市GDP逐年增加,求这两年我市GDP的年平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知3a-2b=2,则6a-4b+5的值为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(Ⅰ)(1)问题引入
如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=90°+$\frac{1}{2}$∠α(用α表示);
(2)拓展研究
如图②,∠CBO=$\frac{1}{3}$∠ABC,∠BCO=$\frac{1}{3}$∠ACB,∠A=α,试求∠BOC的度数120°+$\frac{1}{3}$∠α(用α表示)
(3)归纳猜想
若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=$\frac{1}{n}$∠ABC,∠BCO=$\frac{1}{n}$∠ACB,∠A=α,则∠BOC=$\frac{{(n-1)•{{180}°}+∠α}}{n}$(用α表示).
(Ⅱ)类比探索
(1)特例思考
如图③,∠CBO=$\frac{1}{3}$∠DBC,∠BCO=$\frac{1}{3}$∠ECB,∠A=α,求∠BOC的度数(用α表示).
(2)一般猜想
若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=$\frac{1}{n}$∠DBC,∠BCO=$\frac{1}{n}$∠ECB,∠A=α,请猜想∠BOC=$\frac{{(n-1)•{{180}°}-∠α}}{n}$(用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在500个数据中,用适当的方法抽取50个为样本进行统计,频率分布表中54.5~57.5这一组的频率是0.15,那么估计总体数据在54.5~57.5之间的数据约有75个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,函数y=$\frac{k}{x}$(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.
(1)若△ABD的面积为3,求k的值和直线AB的解析式;
(2)求证:$\frac{DE}{CE}$=$\frac{BE}{AE}$;
(3)若AD∥BC,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知在矩形ABCD中,AB=4,BC=3,按下列要求重叠,试求出所要求的结果.
(1)如图(a),把矩形ABCD沿对角线BD折叠得△EBD、BE交CD于点F,求DF的长;
(2)如图(b),折叠矩形ABCD,使AD与对角线BD重合,求折痕DE的长.
(3)如图(c),折叠矩形ABCD,使点B与点D重合,求折痕EF的长.
(4)如图(d),若AB的长为5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,求DE的长.

查看答案和解析>>

同步练习册答案