精英家教网 > 初中数学 > 题目详情
已知图1和图2中,正方形的边长为1,按要求作格点三角形,并注相应的字母,
(1)在图1中作△ABC,使各其边长均为整数;
(2)在图2中作△A′B′C′,使△A′B′C′∽△ABC,并且A′B′:AB=
2

精英家教网
分析:(1)可作△ABC,使AC=3,AB=5,BC=4;
(2)△A′B′C′∽△ABC,并且A′B′:AB=
2
,即两个三角形的相似比为
2
,可作A'C'=3
2
B′C′=4
2
,则A'B'=5
2
解答:解:所作图形如下所示:
精英家教网
(1)作△ABC,使AC=3,AB=5,BC=4;
(2)∵△A′B′C′∽△ABC,并且A′B′:AB=
2

∴两个三角形的相似比为
2

作A'C'=3
2
B′C′=4
2
,则A'B'=5
2
点评:本题考查了左图中的相似变换的知识,有一定难度,注意借助勾股定理使各边长均为整数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两精英家教网边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数数学公式(m≠0)的图象相交于A、B两点,且A点的坐标是(1,2),B点的坐标是(-2,w).
①求出一次函数和反比例函数的解析式;
②在x轴的正半轴上找一点C使△AOC的面积等于△ABO的面积,并求出C点的坐标.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖北省黄石市九年级(上)期末数学试卷(解析版) 题型:解答题

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目:初中数学 来源:2012年河北省中考数学全真模拟试卷(解析版) 题型:解答题

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年北京市东城区中考数学二模试卷(解析版) 题型:解答题

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

同步练习册答案