精英家教网 > 初中数学 > 题目详情

【题目】很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点的西北方向有一辆小型轿车从B处沿西向正东方向行驶,2秒钟后到达测速点北偏东的方向上的C处,如图.

1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)?

(参考数据:

2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分;时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.

【答案】1197千米/时;(2)小轿车的驾驶员会受到1500元罚款,扣12分的处罚.

【解析】

1)过点AADBC于点D,则AD=40m,通过解直角三角形,求出BDCD的长,从而求出BC的长,进而即可求出速度;

2)求出小轿车的超速范围,即可得到结论.

1)过点AADBC于点D,则AD=40m

∵∠BAD=45°,

∴∠ABD=45°,

BD=AD=40m

∵∠DAC=60°,

CD=AD×tan60°=40m

BC=40+40109.28m

∴小轿车的速度=(千米/小时),

答:该小型轿车在测速过程中的平均行驶速度约是197千米/时;

2)(197-120÷120≈0.64=64%,

50%<64%<70%,

∴小轿车的驾驶员会受到1500元罚款,扣12分的处罚.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.

(1)证明四边形ABCD是菱形,并求点D的坐标;

(2)求抛物线的对称轴和函数表达式;

(3)在抛物线上是否存在点P,使得PBD与PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中有一个正六边形EFGHIJ,其顶点均在矩形的边上,边EJ和边GH分别在矩形的边ADBC上,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A1B1C1A2B2C2A3B3C3AnBnCn均为等腰直角三角形,且C1C2C3Cn90°,点A1A2A3An和点B1B2B3Bn分别在正比例函数yxy=﹣x的图象上,且点A1A2A3An的横坐标分别为123…n,线段A1B1A2B2A3B3AnBn均与y轴平行.按照图中所反映的规律,则AnBnCn的顶点Cn的坐标是____.(其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y轴于点B03),交x轴于AC两点,C点坐标(40),点PBC上方抛物线上一动点(P不与BC重合)

1)求抛物线的解析式;

2)若点P到直线BC距离是,求点P的坐标;

3)连接AP交线段BC于点H,点My轴负半轴上一点,且CH=BM,当AH+CM的值最小时,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形内一点,将线段绕点顺时针旋转得到线段,连接.若,则四边形的面积为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A),AB=1AD=2

1)直接写出BCD三点的坐标;

2)将矩形ABCD向右平移m个单位,使点AC恰好同时落在反比例函数)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1中,上一动点,且的延长线交于点,连接

1)①求证:

②若,当时,求的长;

2)如图2,当时,求证:平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).

1)求王老师步行和骑共享单车的平均速度分别为多少?

2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?

查看答案和解析>>

同步练习册答案