【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
【答案】(1)①证明见解析;②证明见解析;(2)证明见解析;(3)DE=BE﹣AD.
【解析】
(1)根据同角的余角相等得到∠ACD=∠CBE,即可证明△ADC≌△CEB;
(2)根据全等三角形的性质得到AD=CE,DC=EB,即可证明DE=AD﹣BE;
(3)与(1)的证明方法类似,证的△ADC≌△CEB,得出AD=CE,DC=EB,即可得出DE、AD、BE的等量关键.
(1)∵∠ACB=90°
∴∠ACD+∠BCE=90°
又∵AD⊥MN,BE⊥MN
∴∠ADC=∠CEB=90°
∴∠BCE+∠CBE=90°
∴∠ACD=∠CBE
在△ADC和△CEB中,
∴△ADC≌△CEB
∴AD=CE,DC=BE
∴DE=DC+CE=BE+AD;
(2)在△ADC和△CEB中,
∴△ADC≌△CEB
∴AD=CE,DC=EB
∴DE=CE﹣DC=AD﹣EB;
(3)DE=BE﹣AD.
在△ADC和△CEB中,
∴△ADC≌△CEB
∴AD=CE,DC=BE
∴DE=DC﹣CE=BE﹣AD.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法中正确的序号是_____.
①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标;
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列各题:
(1)先化简,再求代数式(的值,其中x=cos30°+;
(2)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=60°, ∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
小明遇到一个问题:在中,,,三边的长分别为、、,求的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.
参考小明解决问题的方法,完成下列问题:
()图是一个的正方形网格(每个小正方形的边长为) .
①利用构图法在答卷的图中画出三边长分别为、、的格点.
②计算①中的面积为__________.(直接写出答案)
()如图,已知,以,为边向外作正方形,,连接.
①判断与面积之间的关系,并说明理由.
②若,,,直接写出六边形的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.
(1)证明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com