精英家教网 > 初中数学 > 题目详情
已知△ABC是等腰直角三角形,∠A = 90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.
(1)若BD是AC的中线,求的值;
(2)若BD是∠ABC的角平分线,求的值;
(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究
值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由
解法1 设AB =" AC" = 1,CD = x,则0<x<1,BC =,AD = 1-x.
在Rt△ABD中,BD2 = AB2 + AD2 =" 1" +(1-x)2 = x2-2x + 2.
由已知可得 Rt△ABD∽Rt△ECD,
,即,从而
,0<x<1,
(1)若BD是AC的中线,则CD =" AD" =" x" =,得
(2)若BD是∠ABC的角平分线,则,得,解得

(3)若,则有 3x2-10x + 6 = 0,解得∈(0,1),
,表明随着点D从A向C移动时,BD逐渐增大,而CE逐渐减小,的值则随着D从A向C移动而逐渐增大.
解法2 设AB =" AC" = 1,∠ABD = a,则 BC =,∠CBE = 45°-a.
在Rt△ABD中,有
在Rt△BCE中,有 CE =" BC·" sin∠CBE =sin(45°-a).
因此.下略……
解法3 (1)∵∠A =∠E = 90°,∠ADB =∠CDE,∴△ADB∽△EDC,∴
由于D是中点,且AB = AC,知AB =" 2" AD,于是 CE =" 2" DE.
在Rt△ADB中,BD =
在Rt△CDE中,由 CE2 + DE2 = CD2,有 CE2 +CE2 = CD2,于是
而 AD = CD,所以
(2)如图,延长CE、BA相交于点F.∵BE是∠ABC的平分线,且BE⊥CF,∴△CBE≌△FBE,得 CE = EF,于是CF =" 2" CE.又∠ABD +∠ADB =∠CDE +∠FCA = 90°,且∠ADB =∠CDE,
∴∠ABD =∠FCA,进而有△ABD≌△ACF,得 BD =" 2" CE,
(3)的值的取值范围为≥1.下略……解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=数学公式.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______;
(3)如图,已知数学公式,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为______.

查看答案和解析>>

同步练习册答案