精英家教网 > 初中数学 > 题目详情
如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.①试判断四边形AEDF的形状,并证明;②若AC=8,CD=4,求四边形AEDF的周长.
分析:(1)按作角的平分线步骤作即可;
(2)由题意和已知可知EF是线段AD的垂直平分线,AD是∠BAC的平分线,再证明△AEG≌△AFG,易得四边相等,所以四边形AEDF是菱形;
②在Rt△ECD中,根据勾股定理求得DE的值,则AE=DE,即可求得周长.
解答:解:(1)如图,
写出结论:射线AM就是所要求的角平分线;

(2)①四边形AEDF是菱形.
证明:如图,
根据题意,可知EF是线段AD的垂直平分线,
则AE=ED,AF=FD,∠AGE=∠AGF=90°,
由(1)可知,AD是∠BAC的平分线,
∴∠EAD=∠DAF.
∵∠AGE=∠AGF,AG=AG,
∴△AEG≌△AFG.
∴AE=AF∴AE=ED=DF=AF.
∴四边形AEDF是菱形.

②设AE=x,则ED=x,CE=8-x,
在Rt△ECD中,42+(8-x)2=x2
解得x=5,故4x=20.
即四边形AEDF的周长是20.
点评:本题考查了图形的折叠与拼接以及三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试判断四边形AEDF的形状,并证明;
②若AC=8,CD=4,求四边形AEDF的周长和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试说明四边形AEDF为平行四边形;
②若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知:Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.
求证:AC+CD=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿射线CB方向平移到△A′B′C′的位置.若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积.

查看答案和解析>>

同步练习册答案