精英家教网 > 初中数学 > 题目详情

【题目】下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若成轴对称,则一定与全等;④有一个角是度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )

A.B.C.D.

【答案】A

【解析】

利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.

解:等腰三角形底边的中点到两腰的距离相等;正确;

等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确:

成轴对称,则一定与全等;正确;

有一个角是度的等腰三角形是等边三角形;不正确;

等腰三角形的对称轴是顶角的平分线所在的直线,不正确.

正确命题为:个;

故选:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DAB上一点,EBC上一点,且ACCDBDBE,∠A40°,则∠CDE的度数为(  )

A.50°B.40°C.60°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+3分别与x,y轴交于点N,M,与反比例函数y= (x>0)的图象交于点A,若AM:MN=2:3,则k=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OAOB,ABx轴于C,点A(,1)在反比例函数y=的图象上.

(1)求反比例函数y=的表达式;

(2)在x轴上存在一点P,使SAOP= SAOB求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).

(1)求反比例函数的解析式及E点的坐标;

(2)求直线DE的解析式;

(3)若矩形OABC对角线的交点为F (2,),作FGx轴交直线DE于点G.

①请判断点F是否在此反比例函数y=的图象上,并说明理由;

②求FG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为   ,图①中m的值为   

(2)求本次调查获取的样本数据的众数、中位数和平均数;

(3)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人写字时眼睛和笔端的距离超过30cm时则符合保护视力的要求.图1是一位同学的坐姿,把她的眼睛B、肘关节C和笔端A的位置关系抽象成图2的△ABC,BC=30cm,AC=22cm,∠ACB=530,她的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin530≈0.8,cos530≈0.6,tan530≈1.3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt ABC中,AC=BCC=90°DAB边的中点,EDF=90°EDFD点旋转,它的两边分别交ACCB的延长线于EF.下面结论一定成立的是______.(填序号)

CD=AB;②DE=DF;③SDEF=2SCEF;④SDEF-SCEF=SABC

查看答案和解析>>

同步练习册答案