精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是   
【答案】分析:延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得CE=AB,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边解答.
解答:解:延长AD到E,使DE=AD,连接CE,
则AE=2AD=2×4=8,
∵AD是BC边上的中线,
∴BD=CD,
∵在△ABD和△ECD中,

∴△ABD≌△ECD(SAS),
∴CE=AB,
又∵AC=5,
∴5+8=13,8-5=3,
∴3<CE<13,
即AB的取值范围是:3<AB<13.
故答案为:3<AB<13.
点评:本题考查了全等三角形的判定与性质,“遇中线加倍延”作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案