分析 此题可设AB=AC=2x,由已知可求出CD和AD,那么也能求出BD=AB-AD,从而求出tan15°.
解答 解:由已知设AB=AC=2x,
∵∠A=30°,CD⊥AB,
∴CD=$\frac{1}{2}$AC=x,
∵AD2+CD2=AC2,
根据勾股定理得,AD2=AC2-CD2=(2x)2-x2=3x2,
∴AD=$\sqrt{3}$x,
∴BD=AB-AD=2x-$\sqrt{3}$x=(2-$\sqrt{3}$)x,
∴tan15°=$\frac{BD}{CD}$=$\frac{(2-\sqrt{3})x}{x}$=2-$\sqrt{3}$.
点评 此题考查的知识点是解直角三角形,解本题的关键是由直角三角形中30°角的性质与勾股定理先求出CD与AD,再求出BD.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 9 | C. | 6$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com