精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为______.

【答案】

【解析】

因为点A,B的对应点G,F分别在直线AD与BC上,所以分两种情况讨论,∠EFD=90°时,证明△EFN∽△FDC,设CD=5a,根据比例式表示出CN,BN即可;当∠EDF=90°时,证明△FCD∽△DCB,设CD=3a, 根据比例式表示出CN,BN即可.

解:分两种情况

∠EFD=90°,如下图,

∵∠EFN=∠C=90°,易证∠EFN=∠FDC,

∴△EFN∽△FDC,

设CD=5a,由题可知,CF=3a,

,∴BC=,

∴BN=NF=,

∠EDF=90°,如下图,

同理易证:△FCD∽△DCB,

设CD=3a,则BC=5a,CF=

∴BF=5a+,

∴BN=,NC=,

综上, CN:BN的值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线交于点A,过点AO的平行线交双曲线于点B,连接AB并延长与y轴交于点,则k的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+2x+3x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线lCx轴于E(4,0).

(1)写出D的坐标和直线l的解析式;

(2)P(x,y)是线段BD上的动点(不与B,D重合),PFx轴于F,设四边形OFPC的面积为S,求Sx之间的函数关系式,并求S的最大值;

(3)点Qx轴的正半轴上运动,过Qy轴的平行线,交直线lM,交抛物线于N,连接CN,将CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小红同学用仪器测量一棵大树AB的高度,在C处测得ADG=30°,在E处测得AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点PPCx轴于点D,交抛物线于点C.

(1)B点坐标为  ,并求抛物线的解析式;

(2)求线段PC长的最大值;

(3)若PAC为直角三角形,直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;

(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,MEF的周长最小?

(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n极数,记为n= 其中,且xy为整数

请任意写出两个极数

猜想任意一个极数是否是99的倍数,请说明理由;

如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m极数,记写出三个满足是完全平方数的只需直接写出结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰OBC的边OBx轴上,OBCBOB边上的高CAOC边上的高BE相交于点D,连接ODAB,∠CBO=45°,在直线BE上求点M,使BMCODC相似,则点M的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程,①3x2+x=20,②2x2-3xy+4=0,③,④x2=0,⑤x2-3x-4=0.是一元二次方程的是(  )

A. ①②B. ①②④⑤C. ①③④D. ①④⑤

查看答案和解析>>

同步练习册答案