精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数)的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为,且当时二次函数的函数值相等.

1)求实数的值;

2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;

3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.

【答案】1;(2t= ;(3Q-1),见解析.

【解析】

1)由题意和图形可求出函数的表达式;

2)结合抛物线内部几何关系和性质求出t值及P点坐标;

3)假设成立(1)若有ACB∽△QNB则有∠ABC=QBN,寻找相似条件,判断是否满足.

解:(1)∵在抛物线上

∴代入得c=

x=-4x=2时二次函数的函数值y相等,

∴顶点横坐标,

,

又∵A-30)在抛物线上,

9a3b+=0

由以上二式得;

2)由(1,

B10),

连接BPMN于点O1,根据折叠的性质可得:O1也为PB中点.

t秒后有,

Pxy),B10

O1PB的中点可得,即,

AC点坐标知ACP点也在直线AC上代入得t=,

3)假设成立;

①若有ACB∽△QNB,则有∠ABC=QBN

Q点在x轴上,ACQN但由题中ACQN坐标知直线的一次项系数为:

ACB不与QNB相似.

②若有ACB∽△QBN,则有

代入(1)得

时有Q-1)则不满足相似舍去;

y=Q-1)则

∴存在点Q-1)使ACB∽△QBN

综上可得:Q-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图所示,则下列说法不正确的是(

A.10天销售20千克B.一天最多销售30千克

C.9天与第16天的日销售量相同D.19天比第1天多销售4千克

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位需购买甲、乙两种消毒剂.经了解,这两种消毒剂的价格都有零售价和批发价(若按批发价,则每种消毒剂购买的数量不少于50),零售时甲种消毒剂每桶比乙种消毒剂多8元,已知购买两种消毒剂各()桶,所需费用分别是960元、720元.

1)求甲、乙两种消毒剂的零售价;

2)该单位预计批发这两种消毒剂500桶,且甲种消毒剂的数量不少于乙种消毒剂数量的,甲、乙两种消毒剂的批发价分别为20/桶、16/桶.设甲种消毒剂批发数量为桶,购买资金总额为(),请写出的函数关系式,并求出的最小值和此时的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若mnmn)是关于x的方程1﹣x﹣a)(x﹣b=0的两根,且ab,则abmn的大小关系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某无人机于空中处探测到目标的俯角分别是,此时无人机的飞行高度,随后无人机从处继续水平飞行m到达处.

1之间的距离

2求从无人机上看目标的俯角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分12分)

已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.ACB = EDF = 90°,DEF = 45°AC = 8 cm,BC = 6 cm,EF = 9 cm

如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CBABC匀速,在DEF移的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移.当DEF的顶点D移动到AC边上时,DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设动时间为t(s)(0<t<4.5).

解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60x70),合格(70x80),良好(80x90),优秀(90x100),制作了如图统计图(部分信息未给出).

由图中给出的信息解答下列问题:

1)求测试成绩为合格的学生人数,并补全频数直方图.

2)求扇形统计图中“良好”所对应的扇形圆心角的度数.

3)这次测试成绩的中位数是什么等第?

4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿水青山就是金山银山,国家倡导全民植树。在今年312日植树节当天,某校七年级一班48名学生全部参加了植树活动,男生每人栽种4株,女生每人栽种3株,全班共栽种170株。

1)该班男、女生各为多少人?

2)学校选择购买甲、乙两种树苗,甲树苗 ,乙树苗 .如果要使购买树苗的钱不超过1200元,那么最多可以购买甲树苗多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为6cm,B⊙O外一点,OB⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为______时,BP⊙O相切.

查看答案和解析>>

同步练习册答案