精英家教网 > 初中数学 > 题目详情

如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;

(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;

(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=α,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用α表示出直线BE、DF形成的锐角β.

答案:
解析:

  (1)证明:延长DF分别交AB、BE于点P、G  1分

  在正方形ABCD和等腰直角△AEF中

  AD=AB,AF=AE,

  ∠BAD=∠EAF=90°

  ∴∠FAD=∠EAB

  ∴△FAD≌△EAB  2分

  ∴∠FDA=∠EBA DF=BE  3分

  ∵∠DPA=∠BPG,∠ADP+∠DPA=90°

  ∴∠EBP+∠BPG=90°

  ∴∠DGB=90°

  ∴DF⊥BE  5分

  (2)改变.DF=kBE,=180°-  7分

  证法(一):延长DF交EB的延长线于点H

  ∵AD=kAB,AF=kAE

  ∴=k,=k

  ∴

  ∵∠BAD=∠EAF=

  ∴∠FAD=∠EAB

  ∴△FAD∽△EAB  9分

  ∴=k

  ∴DF=kBE  10分

  由△FAD∽△EAB得∠AFD=∠AEB

  ∵∠AFD+∠AFH=180

  ∴∠AEB+∠AFH=180°

  ∵四边形AEHF的内角和为360°,

  ∴∠EAF+∠EHF=180°

  ∵∠EAF=,∠EHF=

  ∴=180°∴=180°-  12分

  证法(二):DF=kBE的证法与证法(一)相同

  延长DF分别交EB、AB的延长线于点H、G.

  由△FAD∽△EAB得∠ADF=∠ABE

  ∵∠ABE=∠GBH∴∠ADF=∠GBH

  ∵=∠BHF=∠GBH+∠G∴=∠ADF+∠G.

  在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=

  ∴=180°∴=180°-  12分

  证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180°

  ∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH

  在BHP、CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP

  ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP

  ∴∠EBA+∠CDP=∠BHP

  由△FAD∽△EAB得∠ADP=∠EBA

  ∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP

  ∵∠BAD+∠ADC=180,∠BAD=,∠BHP=

  ∴=180 ∴=180  12分

  (有不同解法,参照以上给分点,只要正确均得分)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图所示,有一个正方体形的铁丝架,把它的侧棱中点I、J、K、L也用铁丝连上.
(1)现在一个蚂蚁想沿着铁丝从A点爬到G点,问最近的路线一共有几条?并用字母把这些路线表示出来(用所经过的连接点字母表示,譬如蚂蚁从A点出发,经过I点L点,最后到达H点,这样的路线用AILH表示).
(2)蚂蚁是否可能从A点出发,沿着铁丝经过每一个连接点恰好一次,最后到达G点?如果可能,请找出一条这样的路线;如果不可能,说明为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,将边长为2的等边三角形沿x轴正方向连续翻折2010次,依次得到点P1,P2,P3…P2010.则点P2010的坐标是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的精英家教网正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:
3
≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

查看答案和解析>>

科目:初中数学 来源: 题型:

一轮船正向东以30海里/小时的速度航行,在A点处发现北偏东60°的方向有一小岛C,又航行2小时后,发现小岛C在北偏东30°方向,为了确定小岛C的具体位置,现在以A点为坐标原点,以正北方向为y轴正方向,以正东方向为x轴正方向建立平面直角坐标系(如图所示).请你帮助计算小岛所在位置的坐标(在直角三角形中,30°角所对的直角边为斜边的一半).

查看答案和解析>>

同步练习册答案