【题目】为全面贯彻党的教育方针,坚持“健康第一的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000(女80米)必考,足球、篮球、排球“三选一”……从2019年秋季新入学的七年级起开始实施,某1学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图。请根据两幅统计图中的信息回答下列问题:
(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图
(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?
(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.
【答案】(1)21,图形见解析;(2)180;(3)
【解析】
(1)先根据足球人数及其百分比求得总人数,再用总人数乘以排球人数占总人数的百分比可得排球人数,即可补全图形;
(2)根据样本估计总体,先求出喜爱篮球运动人数的百分比,然后用400乘以篮球人数占百分比,即可得到喜爱篮球运动人数;
(3)画树状图得出所有等可能的情况数,找出1名男生和1名女生的情况数,根据概率公式即可得出所求概率.
解:(1)(人),
(人).
所以,参与调查的学生中,喜爱排球运动的学生有21人.
补全条形图如下:
(2)(人).
所以,该中学七年级学生中,喜爱篮球运动的学生有180人.
(3)
共有12种等可能情况,(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),其中,1名男生和1名女生有8种.
所以,抽到1名男生和1名女生的概率 .
科目:初中数学 来源: 题型:
【题目】已知二次函数y=kx2+(k+1)x+1(k≠0).
(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;
(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,,点的坐标为.抛物线经过、两点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上的一点,过点作垂直轴于点,交线段于点,使最大.
①求点的坐标和的最大值.
②在直线上是否存在点,使点在以为直径的圆上;若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是半圆O的直径,M,N是半圆上不与A,B重合的两点,且点N在上.
(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;
(2)如图2,过点M作MC⊥AB于点C,P是MN的中点,连接MB,NA,PC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;
(2)以点P(-1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,王刚同学所在的学习小组欲测量校园里一棵大树的高度,他们选王刚作为观测者,并在王刚与大树之间的地面上直立一根高为2m的标杆CD,然后,王刚开始调整自己的位置,当他看到标杆的顶端C与树的顶端E重合时,就在该位置停止不动,这时其他同学通过测量,发现王刚的脚离标杆底部的距离为1m,离大树底部的距离为9m,王刚的眼离地面的高度AB为1.5m,那么大树EF的高为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
类别 | 家庭藏书m本 | 学生人数 |
A | 0≤m≤25 | 20 |
B | 26≤m≤50 | a |
C | 51≤m≤75 | 50 |
D | m≥76 | 66 |
根据以上信息,解答下列问题:
(1)该调查的样本容量为 ,a= ;
(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是 ;
(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com