精英家教网 > 初中数学 > 题目详情
6.如图,在?ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE的度数等于12°.

分析 设∠C=x,则∠ABD=x-54°,求出∠C=∠DBC=x°,根据AB∥CD推出x+x+x-54°=180°,求出x,求出∠ADB,在△ADE中,根据三角形的内角和定理求出即可.

解答 解:设∠C=x,则∠ABD=x-54°,
∵DB=CD,
∴∠C=∠DBC=x°,
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠ABC+∠C=180°,
∴x+x+x-54°=180°,
∴x=78,
即∠C=∠DBC=78°,
∵AD∥BC,
∴∠ADB=∠DBC=78°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE=180°-90°-78°=12°,
故答案为:12°.

点评 本题考查的知识点是平行四边形性质、平行线性质、等腰三角形性质、三角形的内角和定理,能综合运用性质进行推理和计算是解此题的关键,题型较好,是一道比较好的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.如图,是某几何体的三视图及相关数据,则该几何体的表面积是(  )
A.39πB.29πC.24πD.19π

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若关于x的方程$\frac{x+m}{x-3}$+$\frac{3m}{3-x}$=2的解为正数,则m的取值范围是m<3且m≠$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知一次函数y1=$\frac{4}{3}$x-4与反比例函数y2=$\frac{k}{x}$的图象在第一象限相交于点A(6,n),与x轴相交于点B.
(1)填空:n的值为4,k的值为24;当y2≥-4时,x的取值范围是x≤-6或x>0;
(2)以AB为边作菱形ABCD,使点C在点B右侧的x轴上,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列运算错误的是(  )
A.(x23=x6B.x2•x3=x5C.x2-2xy+y2=(x-y)2D.3x-2x=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足$\frac{CF}{DF}=\frac{1}{3}$,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=4.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.
(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,直接写出满足条件的所有点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,要测量旗杆AB的高度,在地面C点处测得旗杆顶部A点的仰角为45°,从C点向外走2米到D点处,(B、C、D三点在同一直线上)测得旗杆顶部A点的仰角为37°,求旗杆AB的高度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,延长BA和CD分别与EF的延长线交于K,H.求证:∠BKE=∠CHE.

查看答案和解析>>

同步练习册答案