精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,二次函数的图象交x轴于两点,交轴于点,点为抛物线的顶点,且两点的横坐标分别为1和4.

(1)求点B的坐标;
(2)求二次函数的函数表达式;
(3)在(2)的抛物线上,是否存在点P,使得45°?若存在,求出点P的坐标;若不存在,请说明理由.

(1)B(7,0);(2);(3)P(6,5)或P(8,-7)

解析试题分析:(1)根据C点的横坐标为4可得抛物线的对称轴为x=4,根据抛物线的对称性即可求得结果;
(2)把点A、B的坐标代入函数关系式,即可根据待定系数法求得结果;
(3)设存在P(x,y)使得∠BAP=45°,分①P在x轴上方,②P在x轴下方,根据抛物线上的点的坐标的特征即可求得结果.
(1)∵两点的横坐标分别为1和4
∴抛物线的对称轴为x=4
∴点B的坐标为(7,0);
(2)∵A(1,0),B(7,0)在抛物线



(3)设存在P(x,y)使得∠BAP=45°
①P在x轴上方的时候,做PE⊥x轴于E,则x-1=y
即:x-1=
解得(舍去)
②P在x轴下方的时候,做PE⊥x轴于F,则x-1=-y
即:x-1=
解得(舍去)
∴存在点P(6,5)或P(8,-7)使得∠BAP=45°.
考点:二次函数的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案