精英家教网 > 初中数学 > 题目详情
已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.
(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.
分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.
(2)根据(1)的结论可得出
AE
DA
=
AB
DE
,进而代入可得出AE•DE的值.
解答:解:(1)证明:如图.

∵四边形ABCD是菱形,
∴AD∥BC.
∴∠1=∠2,
又∵∠B=∠AED,
∴△ABE∽△DEA.

(2)∵△ABE∽△DEA,
AE
DA
=
AB
DE

∴AE•DE=AB•DA.
∵四边形ABCD是菱形,AB=4,
∴AB=DA=4.
∴AE•DE=AB2=16.
点评:此题考查了菱形的性质、相似三角形的性质与判定,解答本题的关键是利用相似三角形对边相等的性质得出∠1=∠2,证明出△ABE∽△DEA,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.
(1)求证:△ABE≌△ADF;

(2)过点C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在菱形ABCD中,AE⊥BC于点E,BE=12,sinD=
513

(1)求菱形的边长;
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案