精英家教网 > 初中数学 > 题目详情
16.在平面直角坐标系xOy中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(-3,1),P(0,t).
①若A、B、P三点的“矩面积”为12,求点P的坐标;
②A、B、P三点的“矩面积”的最小值为4.
(2)已知点E(4,0),F(0,2)M(m,4m),其中m>0.若E、F、M三点的“矩面积”的为8,求m的取值范围.

分析 (1)①首先由题意可得:a=4,然后分别从:当t>2时,h=t-1,当t<1时,h=2-t,去分析求解即可求得答案;
②首先根据题意得:h的最小值为:1,继而求得A,B,P三点的“矩面积”的最小值.
(2)由E,F,M三点的“矩面积”的最小值为8,可得a=4,h=2,即可得$\left\{\begin{array}{l}{0≤m≤4}\\{0≤4m≤2}\end{array}\right.$.继而求得m的取值范围.

解答 解:(1)①由题意:a=4.
当t>2时,h=t-1,
则4(t-1)=12,可得t=4,故点P的坐标为(0,4);
当t<1时,h=2-t,
则4(2-t)=12,可得t=-1,故点P 的坐标为(0,-1);
②∵根据题意得:h的最小值为:1,
∴A,B,P三点的“矩面积”的最小值为4;
故答案为:4;
(2)∵E,F,M三点的“矩面积”为8,
∴a=4,h=2,
∴$\left\{\begin{array}{l}{0≤m≤4}\\{0≤4m≤2}\end{array}\right.$.
∴0≤m≤$\frac{1}{2}$.
∵m>0,
∴0<m≤$\frac{1}{2}$.

点评 此题考查了反比例函数的性质以及不等式组的解法.此题属于新定义题,难度较大,解题的关键是理解a与h的含义,注意掌握分类讨论思想与方程思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.某公园内有一矩形门洞(如图1)和一圆弧形门洞(如图2),在图1中矩形ABCD的边AB,CD上分别有E、F两点,且BE=CF;在图2中上部分是一圆弧.下部分中AB∥CD,AB=CD,AB⊥BC,请仅用无刻度的直尺分别画出图1与图2的一条对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,△ABC的三个顶点的位置如图,P为△ABC内一点,P的坐标为(a,b).
(1)平移三角形ABC,使C点与原点重合,请画出平移后的三角形A′B′C′.
(2)直接写出A、B、P的对应点A′、B′、P′的坐标:
A′(3,1),
B′(1,-3),
P′(a-1,b-2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-$\frac{3}{5}$x(0≤x≤5),则结论:①AF=2;②BF=4;③OA=5;④OB=3,正确结论的序号是(  )
A.①②③B.①③C.①②④D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,二次函数y=-$\frac{\sqrt{3}}{3}{x}^{2}-\frac{2}{3}\sqrt{3}x+\sqrt{3}$的图象交x轴于A,B两点,交y轴于点C,顶点为D.
(1)求 A,B,C三点的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC,求出四边形AEBC的面积;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读理解
    如图1,将△ABC沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿B1A1C的平分线A1B2叠,剪掉重复部分;…;不断重复上述操作,若经过第n次操作,将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C刚好重合,则称△ABC是“可折叠三角形”.
    小丽同学打算探索一个三角形是“可折叠三角形”的规律是什么,于是她从简单情况入手,发现了两种特殊情形:
   
情形1:如图2,△ABC中,AB=AC,则△ABC沿顶角∠BAC的平分线AB1折叠点B与点C重合;
情形2:如图3,将△ABC沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
分析解答下列问题:
(1)在图3中,△ABC是“可折叠三角形”,∠B与∠C之间存在什么等量关系?∠B=2∠C.
(2)若经过三次折叠发现△ABC是“可折叠三角形”,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.并加以证明;
(3)请你猜想:若经过n次折叠发现△ABC是“可折叠三角形”,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.小玲家的阳台窗户上,装有一个和窗户高度相同且可上下伸缩的窗帘.该窗帘由若干列大小相同的菱形组成(图1为其中的一列,每个菱形上下顶点的连线垂直于地面).每列由30个菱形组成,每个菱形的边长为5厘米.已知该窗户的高度为1.8米.
(1)当窗帘完全拉下至窗户的最下端时,每个菱形的较长的对角线长为多少厘米?
(2)将窗帘从窗户的最下端向上拉,当每个菱形的锐角为20°时,如图2,求窗帘向上拉开了多少米?
(结果精确到0.01米,参考数据:sin10°≈0.174,cos10°≈0.985,tan17°≈0.176)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:(-2)-1-|-$\sqrt{8}$|+($\sqrt{2}$-1)0+cos45°.
(2)已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,分别以AB、AC为斜边向外侧作等腰直角三角形,作DF⊥AB,EG⊥AC,垂足分别为F、G,点M是BC的中点,连接DM,EM.

(1)如图1,当AB=AC时,连接FM、GM,求证:△DFM≌△MGE;
(2)如图2,当△ABC是任意三角形时,判断DM、EM的关系并说明理由;
(3)如图3,当△ABC是任意三角形时,分别以AB、AC为斜边向△ABC内侧作等腰直角三角形,点M是BC的中点,连接MD和ME,则△MED的形状是等腰直角三角形.

查看答案和解析>>

同步练习册答案