精英家教网 > 初中数学 > 题目详情
(2006•海珠区一模)已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD(如图),若MN分别为AE、CD的中点,
(1)求证:AM=CN;
(2)求∠MBN的大小;
(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.
分析:(1)根据等边三角形性质得出AB=BD,BC=BE,∠EBC=∠ABC=60°,求出∠ABE=∠DBC,证△ABE≌△DBC,推出AE=DC;
(2)根据全等得出∠EAB=∠CDB,证△AMB≌△DNB,推出∠ABM=∠DBN,求出∠DBN+∠MBD=60°即可;
(3)根据全等三角形的判定和相似三角形的判定定理,结合图形即可得出答案.
解答:(1)证明:∵△ABD和△BCE是等边三角形,
∴AB=BD,BC=BE,∠EBC=∠ABC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中
AB=BD
∠ABE=∠DBC
BE=BC
   
∴△ABE≌△DBC(SAS)
∴AE=DC,
∵M、N分别为AE、CD的中点,
∴AM=
1
2
AE,CN=
1
2
DC
∴AM=CN;

(2)解:∵△ABE≌△DBC,
∴∠EAB=∠CDB,
在△AMB和△DNB中
AM=DN
∠MAB=∠NDB
AB=DB
  
∴△AMB≌△DNB(SAS),
∴∠ABM=∠DBN,
∵∠ABC=∠ABM+∠MBD=60°,
∴∠DBN+∠MBD=60°,
即∠MBN=60°;

(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;
相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.
点评:本题考查了等边三角形的性质,全等三角形的性质和判定,相似三角形的性质和判定等知识点的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•海珠区一模)广重某车间原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件,比原计划提前了5小时,问该车间原计划每小时加工多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•海珠区一模)如图为甲乙两位学生的5次数学测试成绩的折线统计图,你认为成绩稳定的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•海珠区一模)下列各坐标表示的点中,在函数y=x2+1的图象上的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•海珠区一模)已知圆锥的底面周长为16πcm,母线长为10cm,那么这个圆锥的侧面积是
80π
80π
cm2.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•海珠区一模)用0,1,2组成一个三位数,是偶数的概率是
3
4
3
4

查看答案和解析>>

同步练习册答案