精英家教网 > 初中数学 > 题目详情
14.下列计算中,正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.3$\sqrt{2}$-$\sqrt{2}$=3C.$\sqrt{4\frac{1}{4}}$=2$\frac{1}{2}$D.$\sqrt{(-3)^{2}}$=3

分析 分别根据二次根式的加减法与二次根式的化简对各选项进行逐一分析即可.

解答 解:A、$\sqrt{2}$与$\sqrt{3}$不是同类项,不能合并,故本选项错误;
B、3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$≠3,故本选项错误;
C、$\sqrt{4\frac{1}{4}}$=$\frac{\sqrt{17}}{2}$≠2$\frac{1}{2}$,故本选项错误;
D、$\sqrt{(-3)^{2}}$=3,故本选项正确.
故选D.

点评 本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)①试说明CE=CF,∠BCE=∠DCF;
②如图1,若点G在AD上,且∠GCE=45°,则GE=GF成立吗?为什么?
(2)运用(1)中积累的经验和知识,完成下题:
如图2,在梯形ABCG中,AG∥BC,BC>AG,∠B=90°,AB=BC=6,E是AB上 一点,且∠GCE=45°,BE=2,求GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某服装店用24000元购进了一批衬衣,又用10800元购进了一批T裇,已知衬衣的数量是T裇数量的2倍,衬衣单价比T裇单价贵10元.
(1)该商家购进衬衣和T裇各多少件?
(2)商家决定把衬衣和T裇的标价和定为250元,要使衬衣和T裇卖完后的总利润率不低于30%,则衬衣最低标价多少元?(利润率=利润÷成本)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,线段AB边长为1个单位长度的正方形分割为两个等腰直角三角形,以A为圆心,AB的长为半径画弧交数轴于点C,那么点C在数轴上表示的实数是(  )
A.1+$\sqrt{2}$B.$\sqrt{2}$C.$\sqrt{2}-1$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在某段测速公路BC上(公路视为直线)交通管理部门规定汽车的最高行驶速度不能超过60千米/时,并在离该公路100米处设置了一个监测点A,已知点B在A的北偏西60°方向上,点C在点A的偏东40°方向上.(1)监测发现,一辆汽车从点B匀速行驶到点C所用时间为15秒.请你通过计算,判断该越野车在这段限速路上是否超速?(参考数据:sin40°=0.64,tan40°=0.84,$\sqrt{3}$=1.73)
(2)监测发现,在该路段上,一辆货车以每秒15米的速度由B处向C方向行驶,同时另一辆小汽车由C处向B方向行驶,若小汽车的速度是货车速度的$\frac{4}{3}$倍,则经过大约多少时间两车相遇(结果精确到0.01秒)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代数式(x-1)2+5的最小值;
(2)求代数式m2+2m+4的最小值;
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.甲、乙两种水稻试验田连续5年的平均单位面积产量如下:(单位:吨/公顷)
品种第1年第2年第3年第4年第5 年
9.89.910.11010.2
9.410.310.89.79.8
(1)哪种水稻的平均单位面积产量比较高?
(2)哪种水稻的产量比较稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,点A的坐标为(-2,2),点B与点A关于x轴对称,点B先向右平移4个单位长度,再向上平移2个单位长度得到点C.
(1)描出点B和点C,并依次连接AB、BC、CA,得到△ABC;
(2)先将(1)中的△ABC的各顶点的横坐标和纵坐标都乘$\frac{3}{2}$,得到点A的对应点A1,点B的对应点B1,点C的对应点C1,写出A1、B1、C1的坐标,并在平面直角坐标系中描出点A1、B1、C1,得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状围成一个正方形.
(1)图②中的阴影部分面积为(m+n)2-4mn或(m-n)2
(2)观察图②,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是(m+n)2-4mn=(m-n)2
(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了(2m+n)(m+n)=2m2+3mn+n2
(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.(在图中标出相应的长度)

查看答案和解析>>

同步练习册答案