精英家教网 > 初中数学 > 题目详情
16.如图,已知:AD是BC上的中线,BE∥CF.求证:DF=DE.

分析 根据平行线性质得出∠FCD=∠EBD,由BD=DC,∠CDF=∠BDE,根据ASA推出△CDF≌△BDE,即可得出结论.

解答 证明:CF∥BE,
∴∠FCD=∠EBD,
∵AD是BC上的中线,
∴BD=DC,
在△CDF和△BDE中,
$\left\{\begin{array}{l}{∠FCD=∠EBD}\\{BD=DC}\\{∠CDF=∠BDE}\end{array}\right.$,
∴△CDF≌△BDE(ASA),
∴CF=BE.

点评 本题考查了全等三角形的性质和判定,平行线的性质等知识点,解题时注意:全等三角形的对应角相等,对应边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算:
(1)$\frac{\sqrt{72}-\sqrt{16}}{\sqrt{8}}$-($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$)     
(2)$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.铁路上A,B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,请画出E点位置(要求尺规作图,保留作图痕迹)并求出E站应建在离A站多少千米处?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.a与b互为相反数,c与d互为倒数,|x|=10,求(cd)2010x2+(a+b)2010的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:($\frac{2{x}^{2}+2x}{{x}^{2}-1}$-$\frac{{x}^{2}-x}{{x}^{2}-2x+1}$)÷$\frac{x}{x+1}$,其中x=$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.有理数a,b,c在数轴上的位置如图所示,则|a-c|-|c-b|(  )
A.0B.a+bC.-a-cD.b-a

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用总长为6米的铝合金做成一个如图所示的“日”字型窗框,设窗框的高度为x米,窗的透光面积(铝合金所占面积忽略不计)为y平方米.
(1)求y与x之间的函数关系式(结果要化成一般形式);
(2)能否使窗的透光面积达到2平方米,如果能,窗的高度和宽度各是多少?如果不能,试说明理由;
(3)窗的高度为多少时,能使透光面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案